线性空间及其性质

1 集合与映射

1 集合: 作为整体看的一堆东西; 数集合,解集合,点集合;

2 元素: 组成集合的事物为集合的元素;

3 元素属于集合: a ϵ S a\epsilon S aϵS

如果集合S1的元素全是集合S2的元素,即由 a ϵ S 1 a\epsilon S1 aϵS1可以推出 a ϵ S 2 a\epsilon S2 aϵS2,则S1为S2的子集合;

4 两个特殊的子集合:

空集为任一集合的子集;

每个集合都是它自身的子集合。

5 把集合的两个特殊的子集合统称为其当然子集合或假子集;

其余的子集合统称为非当然子集合或真子集。

6 两集合有相同的元素,则集合相等;

集合的交,集合的并;

集合的和集: {x+y| x ϵ S 1 , y ϵ S 2 x\epsilon S1,y\epsilon S2 xϵS1,yϵS2} 记为: S1 + S2

7 数域: 某些数集(含非零的数),如果其中任意两个数的和,差,积,商(除数不为0),仍在该数集中(即数集关于四则运算封闭),那么称该数集为数域;

实数集关于四则运算封闭,则称为实数域;

复数集也形成一个数域,称为复数域,记为C;

8 映射(映照):S与S’两个集合,一个法则: σ : S → S ′ \sigma: S\rightarrow S' σ:SS,它使S中每一个元素a都有S’中一个确定的元素a’与之对应记为: σ ( a ) = a ′ \sigma(a) = a' σ(a)=a

其中a’称为a在映射 σ \sigma σ下的象;

a称为a’在映射下的原象。

9 满射: 设 σ : S → S ′ \sigma :S \rightarrow S' σ:SS,如果S’中每个元素都有原象,则称 σ \sigma σ为满射。

单射: 设 σ : S → S ′ \sigma :S \rightarrow S' σ:SS,如果对a != b,则 σ ( a ) ! = σ ( b ) \sigma(a) != \sigma(b) σ(a)!=σ(b),则称 σ \sigma σ为单射,即 σ ( a ) = σ ( b ) \sigma(a) = \sigma(b) σ(a)=σ(b),则a = b.

2 线性空间及其性质

1 设V是一个非空集合(线性空间),其元素用x,y,z等表示;

K是一个数域,其元素用k,l,m等表示,如果V满足:

(1)在V中定义一个“加法”运算,即当 x , y , z ϵ V x,y,z\epsilon V x,y,zϵV时,有唯一的“和” x + y ϵ V x +y\epsilon V x+yϵV(封闭性),且加法元算满足:结合律,交换律,零元律(存在零元素0,使x+0=x),负元律(对于任一元素 x ϵ V x\epsilon V xϵV,存在一元素 y ϵ V y\epsilon V yϵV,使x+y=0,且称y为x的负元素,记为(-x),即 x+(-x) = 0)

(2)在V中定义一个数乘运算,即当 x ϵ V , k ϵ K x\epsilon V,k\epsilon K xϵV,kϵK时,有唯一的积, k x ϵ V kx\epsilon V kxϵV(封闭性),且数乘运算满足:数因子分配律,分配律,结合律,恒等律。

则称V为数域K上的线性空间。

2 线性空间不能离开某一数域来定义,对于不同数域,同一集合构成的线性空间会不同。

当数域K为实数域时,V为实线性空间;

3 线性空间V要满足1 中的两种运算和八条性质,还应注意唯一性(零元素和负元素)和封闭性。

4 定理: 线性空间V有唯一的零元素,任一元素也有唯一的负元素。

5 线性空间中相关性概念与线性代数中向量组相关性概念类似。

线性组合:

x 1 , x 2 , . . . x m ϵ V , c 1 , c 2 , . . . c m ϵ K x_1,x_2,...x_m\epsilon V, c_1,c_2,...c_m\epsilon K x1,x2,...xmϵV,c1,c2,...cmϵK, c 1 x 1 + c 2 x 2 + . . . . + c m x m = ∑ i = 1 m c i x i c_1x_1 + c_2x_2 +....+c_mx_m = \sum_{i = 1}^{m}{c_ix_i} c1x1+c2x2+....+cmxm=i=1mcixi

称为元素组 x 1 , x 2 , . . . x m x_1,x_2,...x_m x1,x2,...xm的一个线性组合。

线性表示:V中的某个元素x可以表示为其中某个元素组的线性组合,则称x可由该该元素组线性表示。

线性相关性:如果存在一组不全为0 的数 c 1 , c 2 , . . . c m ϵ K c_1,c_2,...c_m\epsilon K c1,c2,...cmϵK,使得对于元素 x 1 , x 2 , . . . x m ϵ V x_1,x_2,...x_m\epsilon V x1,x2,...xmϵV ∑ i = 1 m c i x i = 0 \sum_{i=1}^{m}{c_ix_i = 0} i=1mcixi=0,则称元素组 x 1 , x 2 , . . . x m x_1,x_2,...x_m x1,x2,...xm线性相关,否则称其线性无关。

6 维数: 线性空间V中线性无关向量组所含向量最大个数称为V的维数;

若n是具有这个性质的正整数,则称V的维数是n,记为dimV = n

7 维数是n的线性空间称为数域K上的n维线性空间,记为 V n V^n Vn,当 n = + ∞ n = +\infty n=+时,称为无限线性空间(例如多项式空间 P n ( 1 , t , t 1 , t 2 , . . . t n , . . . ) P_n(1,t,t^1,t^2,...t^n,...) Pn(1,t,t1,t2,...tn,...)都是线性无关的元素)。

8 维数与所选数域有关:

如果V = C,K = R,则dim V. = 2(因为 a + b i a + bi a+bi,若要找到最大线性无关组,因为 c i c_i ci只能取实数范围内的数,所以最大线性无关组有2个(1,i));

如果V = C,K = C,则,dim V = 1(因为 c i c_i ci是可以取到 i 的,所以其最大线性无关组取1就可)。

9 设V是数域K上的线性空间, x 1 , x 2 , . . . x r ( r > = 1 ) x_1,x_2,...x_r(r >= 1) x1,x2,...xr(r>=1)是属于V的r个任意元素,如果满足:

(1) x 1 , x 2 , . . . x r x_1,x_2,...x_r x1,x2,...xr线性无关;(2)V中的任一向量x均可由 x 1 , x 2 , . . . x r x_1,x_2,...x_r x1,x2,...xr线性表示

则称其为V的一个基,并称 x i ( i = 1 , 2 , 3.... r ) x_i(i = 1,2,3....r) xi(i=1,2,3....r)为基向量。

10 称线性空间 V n V^n Vn的一个基 x 1 , x 2 , . . . x n x_1,x_2,...x_n x1,x2,...xn V n V^n Vn的一个坐标系,对于任意的 x ϵ V n x\epsilon V^n xϵVn,它在该基下的线性表示为 ∑ i = 1 n ξ i x i , ( ξ i ϵ K , x i ϵ V , i = 1 , 2 , . . . n ) \sum_{i = 1}^{n}{\xi _ix_i},(\xi _i \epsilon K,x_i\epsilon V,i = 1,2,...n) i=1nξixi,(ξiϵK,xiϵV,i=1,2,...n),则称 ξ 1 , ξ 2 , . . . . ξ n \xi _1,\xi _2,....\xi _n ξ1,ξ2,....ξn为x在该坐标系中的坐标或分量记为: ( ξ 1 , ξ 2 , . . . . ξ n ) T (\xi _1,\xi _2,....\xi _n)^T (ξ1,ξ2,....ξn)T.

11 设线性空间 V n V^n Vn的一个基 x 1 , x 2 , . . . x m x_1,x_2,...x_m x1,x2,...xm,抽象的向量 y , y 1 , y 2 , . . . . y m y,y_1,y_2,....y_m y,y1,y2,....ym在该基下的坐标依次为 α , α 1 , α 2 , . . . α m \alpha,\alpha_1,\alpha_2,...\alpha_m α,α1,α2,...αm则有:(元素线性相关推出向量线性相关;一个元素可由其他元素线性表示,推出一个向量可由其他向量线性表示)

(1) y y y可由 y 1 , y 2 , . . . y m y_1,y_2,...y_m y1,y2,...ym线性表示的充要条件是 α \alpha α可由 α 1 , α 2 , . . . α m \alpha_1,\alpha_2,...\alpha_m α1,α2,...αm线性表示;

(2) y 1 , y 2 , . . . y m y_1,y_2,...y_m y1,y2,...ym线性相关的充要条件是 α 1 , α 2 , . . . α m \alpha_1,\alpha_2,...\alpha_m α1,α2,...αm线性相关;

(3) y i 1 , y i 2 , . . . y i r y_{i_1},y_{i_2},...y_{i_r} yi1,yi2,...yir y 1 , y 2 , . . . y m y_1,y_2,...y_m y1,y2,...ym的最大线性无关组的充要条件是 α i 1 , α i 2 , . . . α i r \alpha_{i_1},\alpha_{i_2},...\alpha_{i_r} αi1,αi2,...αir α 1 , α 2 , . . . α m \alpha_1,\alpha_2,...\alpha_m α1,α2,...αm的最大线性无关组。

(1)的证明:

y = k 1 y 1 + k 2 y 2 + . . . + k m y m y = k_1y_1+k_2y_2 + ...+k_my_m y=k1y1+k2y2+...+kmym

又因为(设 x 1 , x 2 , . . . x m ϵ V x_1,x_2,...x_m\epsilon V x1,x2,...xmϵV为基向量): y i = ( x 1 , x 2 , . . . x m ) ( α i 1 , α i 2 , . . . α i m ) = ( x 1 , x 2 , . . . x m ) α i y_i = (x_{1},x_{2},...x_{m}) (\alpha_{i1},\alpha_{i2},...\alpha_{im}) = (x_{1},x_{2},...x_{m}) \alpha_i yi=(x1,x2,...xm)(αi1,αi2,...αim)=(x1,x2,...xm)αi

所以: y = k i y i = k i ( x 1 , x 2 , . . . x m ) α i = ( x 1 , x 2 , . . . x m ) ( k 1 α 1 + k 2 α 2 + . . . + k m α m ) y = k_iy_i = k_i (x_{1},x_{2},...x_{m}) \alpha_i = (x_1,x_2,...x_m)(k_1\alpha_1 + k_2\alpha_2 +...+ k_m \alpha_m) y=kiyi=ki(x1,x2,...xm)αi=(x1,x2,...xm)(k1α1+k2α2+...+kmαm)

12 旧基与新基

两者都是基,可以相互线性表示

设: x 1 , x 2 , . . . x n x_1,x_2,...x_n x1,x2,...xn V n V^n Vn的旧基, y 1 , y 2 , . . . y n y_1,y_2,...y_n y1,y2,...yn V n V^n Vn的新基,则:

y j = ∑ i = 1 n c i j x i , ( i = 1 , 2 , . . . , n ) y_j = \sum_{i = 1}^{n}{c_{ij}x_i},(i = 1,2,...,n) yj=i=1ncijxi,(i=1,2,...,n)

即: [ y 1 , y 2 , . . . , y n ] = [ x 1 , x 2 , . . . x n ] { C 1 C 2 . . . C n } [y_1,y_2,...,y_n] = [x_1,x_2,...x_n] \left\{ C_{1} C_{2} ...C_{n}\right\} [y1,y2,...,yn]=[x1,x2,...xn]{C1C2...Cn}

其中: C i = [ c i 1 , c i 2 , . . . c i n ] T C_i = [c_{i1},c_{i2},...c_{in}]^T Ci=[ci1,ci2,...cin]T

因此: [ y 1 , y 2 , . . . , y n ] = [ x 1 , x 2 , . . . x n ] C [y_1,y_2,...,y_n] = [x_1,x_2,...x_n] C [y1,y2,...,yn]=[x1,x2,...xn]C

C被称为过渡矩阵,且C是可逆的(因为列向量是线性无关的,元素组( y 1 , y 2 , . . . , y n y_1,y_2,...,y_n y1,y2,...,yn)线性无关,因此坐标线性(C)无关)

13 基是不唯一的;

不同基,坐标表示是不唯一的。

14 旧基线性表示:

设: x ϵ V n x \epsilon V^n xϵVn,它在旧基下的线性表示为: x = ∑ i = 1 n ξ 1 x i = [ x 1 , x 2 , . . . x n ] [ ξ 1 , ξ 2 , . . . ξ n ] T x = \sum_{i =1}^{n}{\xi _1 x_i} = [x_1,x_2,...x_n][\xi _1,\xi_2,...\xi_n]^T x=i=1nξ1xi=[x1,x2,...xn][ξ1,ξ2,...ξn]T

x 的坐标就为: [ ξ 1 , ξ 2 , . . . ξ n ] [\xi_1,\xi_2,...\xi_n] [ξ1,ξ2,...ξn]

15 新基下的线性表示:

x = ∑ i = 1 n ∑ i = 1 n ξ i ′ y i = [ y 1 , y 2 , . . . y n ] [ ξ 1 ′ , ξ 2 ′ , . . . ξ n ′ ] T x = \sum_{i = 1}^{n}{\sum_{i = 1}^{n}{\xi'_i y_i}} = [y_1,y_2,...y_n][\xi'_1,\xi'_2,...\xi'_n]^T x=i=1ni=1nξiyi=[y1,y2,...yn][ξ1,ξ2,...ξn]T

16 新基与旧基可以相互进行线性表示:

[ x 1 , x 2 , . . . x n ] [ ξ 1 , ξ 2 , . . . ξ n ] T = [ y 1 , y 2 , . . . y n ] [ ξ 1 ′ , ξ 2 ′ , . . . ξ n ′ ] T = [ x 1 , x 2 , . . . x n ] C [ ξ 1 ′ , ξ 2 ′ , . . . ξ n ′ ] T [x_1,x_2,...x_n][\xi _1,\xi_2,...\xi_n]^T =[y_1,y_2,...y_n][\xi'_1,\xi'_2,...\xi'_n]^T = [x_1,x_2,...x_n]C[\xi'_1,\xi'_2,...\xi'_n]^T [x1,x2,...xn][ξ1,ξ2,...ξn]T=[y1,y2,...yn][ξ1,ξ2,...ξn]T=[x1,x2,...xn]C[ξ1,ξ2,...ξn]T

17 由于基元素的线性无关性,得到坐标变换关系:

C [ ξ 1 ′ , ξ 2 ′ , . . . ξ n ′ ] T = [ ξ 1 , ξ 2 , . . . ξ n ] T C [\xi'_1,\xi'_2,...\xi'_n]^T = [\xi_1,\xi_2,...\xi_n]^T C[ξ1,ξ2,...ξn]T=[ξ1,ξ2,...ξn]T

因此: [ ξ 1 ′ , ξ 2 ′ , . . . ξ n ′ ] T = C − 1 [ ξ 1 , ξ 2 , . . . ξ n ] T [\xi'_1,\xi'_2,...\xi'_n]^T = C^{-1}[\xi_1,\xi_2,...\xi_n]^T [ξ1,ξ2,...ξn]T=C1[ξ1,ξ2,...ξn]T

18 例题1:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值