PaddleOCR离线环境搭建

步骤:

1.安装python

2.在同配置下互联网环境的机器A上运行起来,参考如下

https://qushen.blog.csdn.net/article/details/135306757

3.机器A导出对应的依赖和模型

4.离线机器B导入对应的的依赖和模型

所以重点的第三步和第四步

导出依赖:

生成依赖清单

pip freeze > requirements.txt

根据依赖清单下载依赖文件

pip download -d  -r requirement.txt

导出模型:

模型默认会下载在C盘,直接复制粘贴就可以,根据离线机器提示路径复制就行

导入依赖:

pip install --no-index --find-links=packages -r requirements.txt
  1. pip install: 这是告诉pip要安装一个或多个包。
  2. --no-index: 这个选项告诉pip不要从PyPI上查找要安装的包。也就是说,只从指定的位置查找。
  3. --find-links=packages: 这个选项后面通常跟着一个路径。它告诉pip去哪里查找要安装的包。在这个例子中,它指向名为“packages”的目录。
  4. -r requirements.txt: 这个选项告诉pip从一个名为“requirements.txt”的文件中读取要安装的包的列表。这种文件通常包含了多个Python包的名称和(可选的)版本号。

综合起来,这条命令的意思是:“从requirements.txt文件中读取要安装的包的列表,并从packages目录中查找这些包进行安装,而不是从PyPI上查找。”

导入模型:

根据离线机器B提示路径粘贴即可。

受到大佬项目 免root跨平台自动化测试框架webrebot 本地离线OCR的启发和指引,成功的把百度开源的 PaddleOCR 应用到PYTHON及VC++ 经过小范围测试python的效果比VC++理想很多,绝大多数游戏及日常都可以成功通用识别. 更新添加DLL版本了 在盘里已经更新了VC++的 DLL版本,及VC++调用测试的!知道易语言 怎么调用64位DLL的也发个例子吧 注: PYTHON代码里还用到了两个组件要在按下面的安装完成PaddlePaddle和PaddleOCR后再执行两个命令才能使用 fastapi 一个异步的超强WEB框架 1、python -m pip install fastapi 2、python -m pip install uvicorn 游戏小图识别成功率比较高 大图测试 python部分代码: python安装很多的坑..在期间找了无数贴子。。自己把经验总结分享 一、安装python         安装3.7或者3.8 python         我的安装环境是 WIN10 X64 PYTHON 3.85 二、安装PaddlePaddle 升级PIP  python -m pip install --upgrade pip         如果您的机器安装的是CUDA9或CUDA10,请运行以下命令安装         python -m pip install paddlepaddle-gpu -i https://mirror.baidu.com/pypi/simple         如果您的机器是CPU,请运行以下命令安装, 工作室或者GPU不太好的就用这个, 正常也使用这个就好了         python -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple 三、克隆\安装PaddleOCR代码         方法一:                git clone https://gitee.com/paddlepaddle/PaddleOCR                 安装第三方库                 cd PaddleOCR                 python -m pip install -r requirments.txt         方法二:                 pip install paddleocr -i https://mirror.baidu.com/pypi/simple PS:95% 运行不成功的问题, 是在这步造成的         安装完成后 再执行 更新 默认安装的numpy版本太高。。 python -m pip install numpy==1.19.3 -i https://mirror.baidu.com/pypi/simple 四、目前PYTHON的识别比C++的高 另附上VC++的识别图 VC++版本因为太大(几个文件,无需安装,命令行取回显方式调用)和PYTHON识别库上传到BAIDU盘中 链接: https://pan.baidu.com/s/1jC7wgx7hiQ-FsYluiIKukQ  提取码: gycx
### 如何在 Windows 环境离线部署和使用 PaddleOCR #### 下载并安装依赖库 为了能够在Windows环境离线运行PaddleOCR,首先需要确保所有必要的依赖项都已提前下载并保存到本地。可以通过联机器预先执行`pip download paddleocr`命令来获取所需的.whl文件和其他资源,并将其复制到目标脱机计算机上。 #### 配置开发环境 由于PaddleOCR支持C++和Python两种环境[^1],这里主要介绍基于Python的配置方式: - **创建虚拟环境**:建议先建立一个新的Python虚拟环境以隔离项目依赖关系。 ```bash python -m venv my_env ``` - **激活虚拟环境** 对于Windows系统而言, ```batchfile .\my_env\Scripts\activate.bat ``` #### 安装PaddleOCR及其依赖 将之前准备好的`.whl`文件放置在一个易于访问的位置,比如项目的根目录下,接着通过以下指令逐一安装这些轮子文件: ```bash pip install *.whl ``` 另外,还需单独安装PaddleOCR本身, ```bash pip install paddleocr ``` 注意这里的安装操作是在完全断的情况下完成的,因此前期准备工作至关重要。 #### 准备模型文件 除了软件包之外,还需要有可用的文字检测与识别模型权重文件。可以从官方GitHub仓库中的release页面找到对应版本的预训练模型压缩包,同样地,在能够上的时候把这些资料也一并下载下来备用。解压后按照文档指示设置好路径参数即可让PaddleOCR加载指定位置上的自定义模型来进行预测工作。 #### 构建可执行应用程序(可选) 如果希望进一步简化最终用户的体验流程,则可以考虑采用PyQt框架构建图形界面应用,并借助PyInstaller工具打包成独立exe文件分发给他人使用。这种方法不仅实现了真正的离线化运作模式,而且还能提供更加友好直观的操作入口[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值