Ollama国产海光DCU(K100-AI)适配

驱动安装

1、安装依赖:

centos:yum install -y rpm-build gcc-c++ cmake automake elfutils-libelf-devel libdrm libdrm-devel pciutils

ubuntu:apt install -y gcc g++ cmake automake libelf-dev libdrm_amdgpu1或libdrm-amdgpu1 libtinfo5 pciutils libdrm-dev

Centos:yum install -y kernel-devel-`uname -r` kernel-modules-extra 

ubuntu:apt install -y linux-headers-`uname -r` linux-modules-extra/

2、安装驱动

安装流程

1) 下载驱动,下载地址:https://cancon.hpccube.com:65024/6/main/latest%E9%A9%B1%E5%8A%A8

2)修改驱动权限 chmod +x rock*.run

3)安装驱动

./rock*.run

4)重启下驱动服务

systemctl restart hymgr

5)如有升级vbios 需要重启服务器

Docker安装

docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.3.0-py3.10-dtk24.04.3-ubuntu20.04

docker run --shm-size 500g --network=host --name=dpskr1 --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v 项目地址(绝对路径):/home/ -v /opt/hyhal:/opt/hyhal:ro -it <your IMAGE ID> bash

配置ollama环境

git clone -b 0.5.7 http://developer.sourcefind.cn/codes/OpenDAS/ollama.git --depth=1

cd ollama

# 编译

wget https://go.dev/dl/go1.23.4.linux-amd64.tar.gz
tar -C /usr/local -xzf go1.23.4.linux-amd64.tar.gz
export PATH=$PATH:/usr/local/go/bin

# 修改go下载源,提升速度(按需设置)
go env -w GOPROXY=https://goproxy.cn,direct

# 运行编译

export LIBRARY_PATH=/opt/dtk/lib:$LIBRARY_PATH
make -j 16
go build .

启用服务端 (server) 

export HSA_OVERRIDE_GFX_VERSION=设备型号(如: Z100L gfx906对应9.0.6;K100 gfx926对应9.2.6;K100AI gfx928对应9.2.8)

# 例如 export HSA_OVERRIDE_GFX_VERSION=9.2.8
# rocminfo|grep gfx 这个命令排查

export ROCR_VISIBLE_DEVICES=显卡序号(0,1,2,3,4,5,6,...)

# 例如 export ROCR_VISIBLE_DEVICES=0,1,2,3
# hy-smi  这个命令排查


./ollama serve

启用应用端 (chat)

cd  ollama

./ollama run deepseek-r1:671b

 常用命令

docker start 7126b390877b
#进入容器
docker exec -it 7126b390877b /bin/bash
#进入容器
ollama ps
#查看cpu和gpu占比

### 海光 DCU K100 的硬件规格与性能参数 海光 DCU K100 是一款高性能的数据中心加速卡,主要面向人工智能训练和推理任务。其设计目标是在大规模并行计算领域提供卓越的性能表现。以下是关于该产品的具体信息: #### 硬件规格 - **制程工艺**: 使用先进的制造技术,确保低功耗的同时提升运算效率[^3]。 - **核心数量**: 配备大量计算单元,能够支持高并发的任务处理需求。 - **显存配置**: 提供高达 40GB 的高速 HBM 显存,满足大型模型对于内存的需求[^1]。 #### 性能参数 - **浮点运算能力**: 支持 FP16 和 INT8 数据类型下的高效矩阵乘法操作,在深度学习框架中有显著优势。 - **带宽指标**: 内部互联结构经过优化,具备极高的数据传输速率,减少瓶颈效应的发生概率。 - **能耗管理**: 功率控制机制完善,能够在不同负载条件下维持稳定运行状态。 #### 应用场景 得益于上述特点,海光 DCU K100 广泛应用于以下几个方面: - **自然语言处理(NLP)**: 对超大规模预训练语言模型进行微调时表现出色,例如 Qwen 系列中的多个版本均推荐搭配此款设备使用。 - **计算机视觉(CV)**: 实现图像分类、对象检测等功能所需的复杂算法加速。 - **科学计算**: 解决偏微分方程数值求解等问题所需的大规模线性代数运算。 ```python import torch device = 'cuda' if torch.cuda.is_available() else 'cpu' model = YourModel().to(device) if device == 'cuda': print(f"Using GPU with {torch.cuda.get_device_name(0)}") else: print("No compatible GPU found.") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值