下面是一个完整的C程序示例,它展示了如何为139x180的灰度图像创建一个积分图,并使用这个积分图进行快速均值滤波。这里也包括了上一条回答中提到的积分图的优化计算方法。
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
// 优化的积分图计算
void computeIntegralImageOptimized(unsigned char* image, unsigned int* integralImage, int width, int height) {
unsigned int rowSum = 0;
for (int y = 0; y < height; y++) {
rowSum = 0; // 每行开始时重置累积和
for (int x = 0; x < width; x++) {
rowSum += image[y * width + x];
integralImage[y * width + x] = rowSum + (y > 0 ? integralImage[(y - 1) * width + x] : 0);
}
}
}
// 使用积分图进行快速均值滤波
void fastMeanFilter(unsigned char* image, unsigned char* output, unsigned int* integralImage, int width, int height, int filterSize) {
int edge = filterSize / 2;
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
// 计算邻域边界
int x1 = x - edge;
int x2 = x + edge;
int y1 = y - edge;
int y2 = y + edge;
// 边界检查
x1 = x1 < 0 ? 0 : x1;
y1 = y1 < 0 ? 0 : y1;
x2 = x2 >= width ? width - 1 : x2;
y2 = y2 >= height ? height - 1 : y2;
// 计算邻域内的和
unsigned int sum = integralImage[y2 * width + x2];
if (x1 > 0) {
sum -= integralImage[y2 * width + (x1 - 1)];
}
if (y1 > 0) {
sum -= integralImage[(y1 - 1) * width + x2];
}
if (x1 > 0 && y1 > 0) {
sum += integralImage[(y1 - 1) * width + (x1 - 1)];
}
// 计算平均值并赋值
output[y * width + x] = (unsigned char)(sum / ((x2 - x1 + 1) * (y2 - y1 + 1)));
}
}
}
int main() {
int width = 139;
int height = 180;
int filterSize = 5; // 可以调整滤波器大小
// 假设inputImage是以一维动态数组形式存储的139x180灰度图
unsigned char* inputImage = (unsigned char*)malloc(width * height * sizeof(unsigned char));
unsigned char* outputImage = (unsigned char*)malloc(width * height * sizeof(unsigned char));
unsigned int* integralImage = (unsigned int*)malloc(width * height * sizeof(unsigned int));
// 初始化图像数据...
// 例如,可以从文件加载,或者赋予测试值等
// 计算积分图
computeIntegralImageOptimized(inputImage, integralImage, width, height);
// 使用积分图进行快速均值滤波
fastMeanFilter(inputImage, outputImage, integralImage, width, height, filterSize);
// 使用outputImage...
// 例如,保存到文件,显示等
// 释放内存
free(inputImage);
free(outputImage);
free(integralImage);
return 0;
}
在这个代码中,computeIntegralImageOptimized
函数计算输入图像的积分图,fastMeanFilter
函数使用这个积分图进行快速均值滤波。main
函数执行整个流程,包括分配内存、调用函数、以及最后的内存清理。
请记住,这个代码是一个示例,它没有包含图像的加载和保存,你需要根据实际情况来处理这些部分。另外,考虑到不同的环境和需求,你可能需要进一步调整和优化这个代码。在实际使用之前,确保在你的环境中充分测试并验证其正确性和性能。