均值滤波积分图加速

下面是一个完整的C程序示例,它展示了如何为139x180的灰度图像创建一个积分图,并使用这个积分图进行快速均值滤波。这里也包括了上一条回答中提到的积分图的优化计算方法。

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

// 优化的积分图计算
void computeIntegralImageOptimized(unsigned char* image, unsigned int* integralImage, int width, int height) {
    unsigned int rowSum = 0;
    for (int y = 0; y < height; y++) {
        rowSum = 0;  // 每行开始时重置累积和
        for (int x = 0; x < width; x++) {
            rowSum += image[y * width + x];
            integralImage[y * width + x] = rowSum + (y > 0 ? integralImage[(y - 1) * width + x] : 0);
        }
    }
}

// 使用积分图进行快速均值滤波
void fastMeanFilter(unsigned char* image, unsigned char* output, unsigned int* integralImage, int width, int height, int filterSize) {
    int edge = filterSize / 2;
    
    for (int y = 0; y < height; y++) {
        for (int x = 0; x < width; x++) {
            // 计算邻域边界
            int x1 = x - edge;
            int x2 = x + edge;
            int y1 = y - edge;
            int y2 = y + edge;

            // 边界检查
            x1 = x1 < 0 ? 0 : x1;
            y1 = y1 < 0 ? 0 : y1;
            x2 = x2 >= width ? width - 1 : x2;
            y2 = y2 >= height ? height - 1 : y2;

            // 计算邻域内的和
            unsigned int sum = integralImage[y2 * width + x2];
            if (x1 > 0) {
                sum -= integralImage[y2 * width + (x1 - 1)];
            }
            if (y1 > 0) {
                sum -= integralImage[(y1 - 1) * width + x2];
            }
            if (x1 > 0 && y1 > 0) {
                sum += integralImage[(y1 - 1) * width + (x1 - 1)];
            }

            // 计算平均值并赋值
            output[y * width + x] = (unsigned char)(sum / ((x2 - x1 + 1) * (y2 - y1 + 1)));
        }
    }
}

int main() {
    int width = 139;
    int height = 180;
    int filterSize = 5;  // 可以调整滤波器大小

    // 假设inputImage是以一维动态数组形式存储的139x180灰度图
    unsigned char* inputImage = (unsigned char*)malloc(width * height * sizeof(unsigned char));
    unsigned char* outputImage = (unsigned char*)malloc(width * height * sizeof(unsigned char));
    unsigned int* integralImage = (unsigned int*)malloc(width * height * sizeof(unsigned int));

    // 初始化图像数据...
    // 例如,可以从文件加载,或者赋予测试值等

    // 计算积分图
    computeIntegralImageOptimized(inputImage, integralImage, width, height);

    // 使用积分图进行快速均值滤波
    fastMeanFilter(inputImage, outputImage, integralImage, width, height, filterSize);

    // 使用outputImage...
    // 例如,保存到文件,显示等

    // 释放内存
    free(inputImage);
    free(outputImage);
    free(integralImage);

    return 0;
}

在这个代码中,computeIntegralImageOptimized 函数计算输入图像的积分图,fastMeanFilter 函数使用这个积分图进行快速均值滤波。main 函数执行整个流程,包括分配内存、调用函数、以及最后的内存清理。

请记住,这个代码是一个示例,它没有包含图像的加载和保存,你需要根据实际情况来处理这些部分。另外,考虑到不同的环境和需求,你可能需要进一步调整和优化这个代码。在实际使用之前,确保在你的环境中充分测试并验证其正确性和性能。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值