2阶段目标检测
物体检测(定位,找RP)+语义分割
常见模型:R-CNN、SPP-Net、Fast R-CNN、Faster R-CNN和R-FCN
Mask R-CNN= Faster R-CNN + FCN
1阶段目标检测
常见模型
YOLO
SSD
分Cells,然后B个预测默认区域,然后不断的对区域进行微调。
用到了中间多层的卷积层输出。
预测速度还非常快,并且准确率比yolo高。
比2阶段快,但是准确度低,原因是类别不均衡情况,因为背景的类型数量远远的大于前景类别数量,这个不均衡导致了准确度降低。为了解决,提出了focal loss。
原理就是降低已经能够准确预测部分的在总共loss中的比重。
RetinaNet
FCOS
fully convolutional one-stage object detection,没有bounding box初始化,因此就不需要进行超参数设置