Object Dection note

2阶段目标检测

物体检测(定位,找RP)+语义分割
常见模型:R-CNN、SPP-Net、Fast R-CNN、Faster R-CNN和R-FCN
Mask R-CNN= Faster R-CNN + FCN

1阶段目标检测

常见模型

YOLO
在这里插入图片描述

SSD
分Cells,然后B个预测默认区域,然后不断的对区域进行微调。
用到了中间多层的卷积层输出。
预测速度还非常快,并且准确率比yolo高。
在这里插入图片描述
比2阶段快,但是准确度低,原因是类别不均衡情况,因为背景的类型数量远远的大于前景类别数量,这个不均衡导致了准确度降低。为了解决,提出了focal loss。
原理就是降低已经能够准确预测部分的在总共loss中的比重。
在这里插入图片描述
RetinaNet
FCOS
fully convolutional one-stage object detection,没有bounding box初始化,因此就不需要进行超参数设置

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值