子集切割型 递推的dp
链接
有别于旅行商那种子集dp f[s][i]这种。。
子集切割型。。他研究的一般是子集和子集的拼凑。。
有点像 区间dp的递推类似。。把当前子集 分割成小子集+小子集。
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define ll __int128_t
#define ar array<int, 2>
#define arr array<int, 3>
int n, m, k, inf = 1LL << 61, mod = 998244353;// 1e9+7;
const int N = 18;
int f[1 << N], a[N];
void solve() {
cin >> n >> m;
for (int i = 1; i <= m; ++i) {
int x, y;
cin >> x >> y;
x--, y--;
a[x] |= 1 << y;//这种记录方式可以快速验证 一些和x有关的信息。
a[y] |= 1 << x;
}
for (int i = 0; i < n; ++i)
a[i] |= 1 << i;
memset(f, -1, sizeof f);
for (int s = 0; s < 1 << n; ++s) {//就是初始化那些自成 完全图的子集 。。
int ok = 1;
for (int i = 0; i < n; ++i) {
if (s >> i & 1 && (a[i]&s) != s)
ok = inf;
}
f[s] = ok;
}
for (int s = 0; s < 1 << n; ++s)
for (int j = s; j >= 0; j = (j - 1)&s) {
f[s] = min(f[s], f[j] + f[s ^ j]);//这边就是切割 拼凑
if (j == 0)
break;
}
cout << f[(1 << n) - 1];
};
signed main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout << fixed << setprecision(15);
#ifdef DEBUG
freopen("../1.in", "r", stdin);
#endif
//init_f();
//init();
//expr();
// int T; cin >> T; while(T--)
solve();
return 0;
}