F - Close Group子集切割型

子集切割型 递推的dp
链接
有别于旅行商那种子集dp f[s][i]这种。。
子集切割型。。他研究的一般是子集和子集的拼凑。。
有点像 区间dp的递推类似。。把当前子集 分割成小子集+小子集。

#include <bits/stdc++.h>
using namespace std;
#define int long long
#define ll __int128_t
#define ar array<int, 2>
#define arr array<int, 3>
int  n, m, k, inf = 1LL << 61, mod = 998244353;// 1e9+7;
const int N = 18;
int f[1 << N], a[N];
void solve() {
	cin >> n >> m;
	for (int i = 1; i <= m; ++i) {
		int x, y;
		cin >> x >> y;
		x--, y--;
		a[x] |= 1 << y;//这种记录方式可以快速验证 一些和x有关的信息。
		a[y] |= 1 << x;
	}
	for (int i = 0; i < n; ++i)
		a[i] |= 1 << i;
		
	memset(f, -1, sizeof f);
	for (int s = 0; s < 1 << n; ++s) {//就是初始化那些自成 完全图的子集 。。
		int ok = 1;
		for (int i = 0; i < n; ++i) {
			if (s >> i & 1 && (a[i]&s) != s)
				ok = inf;
		}
		f[s] = ok;
	}

	for (int s = 0; s < 1 << n; ++s)
		for (int j = s; j >= 0; j = (j - 1)&s) {
			f[s] = min(f[s], f[j] + f[s ^ j]);//这边就是切割 拼凑
			if (j == 0)
				break;
		}
	cout << f[(1 << n) - 1];
};




signed main() {
	ios::sync_with_stdio(false);
	cin.tie(0);
	cout << fixed << setprecision(15);
#ifdef DEBUG
	freopen("../1.in", "r", stdin);
#endif
	//init_f();
	//init();
	//expr();
	// int T; cin >> T; while(T--)
	solve();
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值