YOLOv3的相关介绍文档

本文详细介绍了YOLOv3的结构、性能对比、backbone设计、输出机制、一些关键技巧及损失函数。YOLOv3通过多尺度预测提升了检测效果,采用Darknet-53作为backbone,利用残差结构加深网络,并运用logistic回归优化b-box预测。此外,文章还探讨了YOLOv3的优缺点,如快速、低背景误检率和通用性强,但也指出位置精准性和召回率的不足。
摘要由CSDN通过智能技术生成

一、yolo_v3保留的东西:

①、“分而治之”,从yolo_v1开始,yolo算法就是通过划分单元格来检测,只是划分的数量不一样。

②、采用“leaky ReLU”作为激活函数。

③、端到端进行训练。一个loss function搞定训练,只需关注输入端和输出端。

④、从yolo_v2开始,yolo就用batch normalization作为正则化、加速收敛和避免过拟合的方法,把BN层和leaky relu层接到每一层卷积层之后。

⑤多尺度训练。在速度和准确率之间tradeoff。想速度快点,可以牺牲准确率;想准确率高点儿,可以牺牲一点速度。

二、yolo_v3的性能对比

       yolo_v3的模型比之前的模型复杂了不少,可以通过改变模型结构的大小来权衡速度与精度。速度对比如下:

https://upload-images.jianshu.io/upload_images/5971313-83801b2d202e10a4.JPG?imageMogr2/auto-orient/strip%7CimageView2/2/w/566

图1. YOLOv3 与其他模型检测方法在coco数据集上的性能比较

 

三、yolo_v3的结构图如下:

https://i-blog.csdnimg.cn/blog_migrate/c6bf89798f39483d98c1fd3148c29ac7.jpeg

图2. yolo_v3结构图

上图的一些补充:

DBL:就是代码中的Darknetconv2d­_BN_Leaky,是yolo­_v3的基本组件。就是卷积+BN+Leaky relu。对于v3来说,BN和Leaky relu已经是和卷积层不可分离的部分了,共同构成了最小组件。

resn:n代表数字,有res1,res2,…,res8等等,表示这个res_blovk里含有多少个res_unit。这是yolo_v3的大组件,yolo_v3开始借鉴了ResNet的残差结构,使用这种结构可以让网络结构更深。对于res_block的解释,可以在上图的右下角直观看到,其基本组件也是DBL。

concat:张量拼接。将darknet中间层和后面的某一层的上采样进行拼接。拼接的操作和残差层add的操作是不一样的,拼接会扩充张量的维度,而add只是直接相加不会导致张量维度的改变。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值