信号处理-小波包分解

本文介绍了小波包分解的概念,对比了它与小波分解的区别,强调了小波包在非平稳信号分析中的优势。通过小波包树与时频图的解读,阐述了分解系数的计算原理。并提供了Python实现小波包分解的实例,包括导入相关库、创建小波包树、提取分解系数以及能量特征的提取。
摘要由CSDN通过智能技术生成

小波分解与小波包分解

工程应用中经常需要对一些非平稳信号进行,小波分析和小波包分析适合对非平稳信号分析,相比较小波分析,利用小波包分析可以对信号分析更加精细,小波包分析可以将时频平面划分的更为细致,对信号的高频部分的分辨率要好于小波分析,可以根据信号的特征,自适应的选择最佳小波基函数,比便更好的对信号进行分析,所以小波包分析应用更加广泛。
小波包分解(Wavelet Packet Decomposition),又称为最优子带树结构(Optimal Subband Tree Structuring)正是对小波变换的进一步优化。其主要的算法思想是:在小波变换的基础上,在每一级信号分解时,除了对低频子带进行进一步分解,也对高频子带进行进一步分解。最后通过最小化一个代价函数,计算出最优的信号分解路径,并以此分解路径对原始信号进行分解。
在这里插入图片描述
①小波分解
小波变换只对信号的低频部分做进一步分解,而对高频部分也即信号的细节部分不再继续分解,所以小波变换能够很好地表征一大类以低频信息为主要成分的信号ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

闪闪发亮的小星星

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值