论文:
Learning with Local and Global Consistency
Dengyong Zhou, Olivier Bousquet
摘要:提出一个半监督学习方法,设计一个足够 smooth、关于已标记和未标记点共同所揭示的内部结构的分类函数。用一个简单的算法获得这样一个smooth的solution。我们的方法在许多分类问题上产生了令人鼓舞的实验结果,并证明了未标记数据的有效利用。
半监督学习问题的关键是先验一致性假设:
(1)nearby points are likely to have the same label; (局部一致性)
(2)points on the same structure (typically referred to as a cluster or a manifold) are likely to have the same label.(全局一致性)
我们方法的基调是让每个点迭代地将其标签信息扩展到其邻居,直到获得全局稳定状态。
1、算法
给定点集X={x1,…,xl,xl+1,…xn},以及标签集L={1,…c},前 l 个点xi的标签是yi (属于L集合),其余点为未标记的 ,目标是预测为标记点的label.
F是一系列非负的nc的矩阵。F可以理解为一个向量函数,为每一个xi分配一个Fi。
定义一个 nc matrix Y(属于F),如果xi被标记(yi = j),则Yij = 1,否则Yij = 0 。显然,Y与初始标签一致。
算法步骤:
1.如果i != j且Wii = 0,则定义亲和度矩阵W,用来表示样本之间的空间位置关系,且其对角线元素为0。