【阅读论文】《Learning with Local and Global Consistency》

本文深入探讨了一种半监督学习方法,基于局部和全局一致性假设,通过迭代算法平滑分类函数,有效地利用未标记数据。实验表明,这种方法在多种任务中取得了良好的效果,能改善监督学习的分类结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文:
Learning with Local and Global Consistency
Dengyong Zhou, Olivier Bousquet

摘要:提出一个半监督学习方法,设计一个足够 smooth关于已标记和未标记点共同所揭示的内部结构的分类函数。用一个简单的算法获得这样一个smooth的solution。我们的方法在许多分类问题上产生了令人鼓舞的实验结果,并证明了未标记数据的有效利用。

半监督学习问题的关键是先验一致性假设
(1)nearby points are likely to have the same label; (局部一致性)
(2)points on the same structure (typically referred to as a cluster or a manifold) are likely to have the same label.(全局一致性)

我们方法的基调是让每个点迭代地将其标签信息扩展到其邻居,直到获得全局稳定状态。

1、算法

给定点集X={x1,…,xl,xl+1,…xn},以及标签集L={1,…c},前 l 个点xi的标签是yi (属于L集合),其余点为未标记的 ,目标是预测为标记点的label.
在这里插入图片描述
在这里插入图片描述
F是一系列非负的nc的矩阵。F可以理解为一个向量函数,为每一个xi分配一个Fi。
定义一个 n
c matrix Y(属于F),如果xi被标记(yi = j),则Yij = 1,否则Yij = 0 。显然,Y与初始标签一致。
算法步骤
1.如果i != j且Wii = 0,则定义亲和度矩阵W,用来表示样本之间的空间位置关系,且其对角线元素为0。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值