ELU激活函数以及python画图

ELU(Exponential Linear Units)激活函数结合了sigmoid和ReLU的优点,能缓解梯度消失并提高对输入变化的鲁棒性。其在深度学习中表现出更好的收敛性能,特别是在ImageNet上的实验表明,相比于ReLU和PReLU,ELU在网络不使用Batch Normalization时也能稳定收敛。本文将探讨ELU的特性,并提供Python绘图示例。

Elu激活函数论文:https://arxiv.org/pdf/1511.07289v5.pdf
论文理解:https://blog.csdn.net/mao_xiao_feng/article/details/53242235?locationNum=9&fps=1
https://blog.csdn.net/m0_37561765/article/details/78398098
https://blog.csdn.net/u012524708/article/details/79579313
在这里插入图片描述
Elu函数融合了sigmoid和ReLU,左侧具有软饱和性,右侧无饱和性。右侧线性部分使得ELU能够缓解梯度消失,而左侧软饱能够让ELU对输入变化或噪声更鲁棒。ELU的输出均值接近于零,所以收敛速度更快。在 ImageNet上,不加 Batch Normalization 30 层以上的 ReLU 网络会无法收敛,PReLU网络在MSRA的Fan-in (caffe )初始化下会发散,而 ELU 网络在Fan-in/Fan-out下都能收敛。

python画激活函数
参考:https://blog.csdn.net/Xin_101/article/details/93738819
(threshold、sigmoid、Relu、PRelu、tanh)
Elu函数

import matplotlib.pyplot as plt
import mpl_toolkits.axisartist as axisartist
import numpy as np
import math
fig = plt.figure(figsize=(6, 6))
ax = axisartist.Subplot(fig, 111)
fig.add_axes(ax)
# 隐藏坐标轴
ax.axis[:].set_visible(False)
# 添加坐标轴
ax.axi
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值