Gyroscope Larnging 001: Angle Momentum & Rotational Inertia

Angle Momentum : 角动量, 标识质点矢径扫过面积速度的大小, 也被称为动量矩。从意义可以看出, 它跟矢径大小以及角速度有关,矢径越大,角速度越大,则角动量越大。

 

角动量公式: 物体到原点的矢径和其动量的叉积: L= r x p = r x (mv) = mr²ω=Iω

L表示角动量;
r表示以质点到旋转中心(轴心)的矢径, 方向由原点指向质点;
p表示动量; 
v表示质点的线速度(方向沿运动曲线切线方向); 线速度和角速度的关系是 v = ω x r, 三者全是矢量;
ω表示角速度,是矢量;
I被定义为转动惯量,Rotational Inertial; 沿自转轴的转动惯量被称为极转动惯量;

 

从定义和公式可以看出, 角动量是两个矢量的叉乘, 遵循右手螺旋发展;

 

例如:《惯性导航》第二版 例2.1

例: 一个转子的极转动惯量Iz = 398克*厘米², 转子的转速为n=24000转/分钟, 求转子的角动量。

解: 转子自转角速度 ω = n*2π = 24000*2*3.1415/60 = 2513.27 (弧度/秒)

       角动量为 :  L = Iz*ω = 398 * 2513.27  = 1000281.46 克*厘米²*弧度/秒 =  1000281.46 /9.8 /1000 (克力*厘米*秒) = 1020 (克力*厘米*秒) 

 

克力: 1克物体受到的重力;  1克力= 9.8牛/1000 ;  所以1克力是让1克物体加速到1000厘米/秒²的力;

又由于牛顿定律 F = ma ,S=0.5*a*t² 推得 a= 2S*t² ,因此 F = m*2S*t² ; 

 

 

Rotational Inertial: 转动惯量, 表征缸体绕轴转动时的惯性(保持匀速圆周运动或静止的特性),用字母I表示,I = mr²。 可以看出跟质量和质点到转轴的距离有关;

转动惯量在旋转力学中的角色相当于现行动力学中的质量,可类比的理解为一个质点对于旋转运动的惯性。

角动量是个标量,其值取决于物体的形状、质量分布以及转轴的位置,同缸体绕轴的转动状态(如角速度的大小)无关。

 

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页