数值分析——求解非线性方程

本文探讨了数值分析中如何利用Python解决非线性方程的问题,包括介绍了常见的迭代方法,如牛顿法、二分法,并提供了相关的Python实现示例,帮助读者理解并应用这些算法。
摘要由CSDN通过智能技术生成
"""
    求解非线性方程
    --------------
        1. 牛顿法
        2. 弦截法
"""

#
from sympy import *
from sympy.abc import x,y,z

def newton(f, solu, iters=5):
    '''
    牛顿法
    :param f:     方程式
    :param solu:  初始解
    :param iters: 迭代次数
    :return:
    '''

    counter = 0   # 记录迭代次数
    for i in range(iters):
        solu = solu - f.subs(x,solu)/diff(f).subs(x,solu)
        c
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值