floy应用-leetcode1334阈值距离内邻居最少的城市

注意,连接城市 i 和 j 的路径的距离等于沿该路径的所有边的权重之和。

 

示例 1:

输入:n = 4, edges = [[0,1,3],[1,2,1],[1,3,4],[2,3,1]], distanceThreshold = 4
输出:3
解释:城市分布图如上。
每个城市阈值距离 distanceThreshold = 4 内的邻居城市分别是:
城市 0 -> [城市 1, 城市 2] 
城市 1 -> [城市 0, 城市 2, 城市 3] 
城市 2 -> [城市 0, 城市 1, 城市 3] 
城市 3 -> [城市 1, 城市 2] 
城市 0 和 3 在阈值距离 4 以内都有 2 个邻居城市,但是我们必须返回城市 3,因为它的编号最大。
示例 2:

输入:n = 5, edges = [[0,1,2],[0,4,8],[1,2,3],[1,4,2],[2,3,1],[3,4,1]], distanceThreshold = 2
输出:0
解释:城市分布图如上。 
每个城市阈值距离 distanceThreshold = 2 内的邻居城市分别是:
城市 0 -> [城市 1] 
城市 1 -> [城市 0, 城市 4] 
城市 2 -> [城市 3, 城市 4] 
城市 3 -> [城市 2, 城市 4]
城市 4 -> [城市 1, 城市 2, 城市 3] 
城市 0 在阈值距离 4 以内只有 1 个邻居城市。
 

提示:

2 <= n <= 100
1 <= edges.length <= n * (n - 1) / 2
edges[i].length == 3
0 <= fromi < toi < n
1 <= weighti, distanceThreshold <= 10^4
所有 (fromi, toi) 都是不同的。

思路:  注意:图算法,边初始化的值很重要。 先floyd 再比较小于那个distanceThreshold值

class Solution {
    public int findTheCity(int n, int[][] edges, int distanceThreshold) {

         // res 存的是可到达的值
         int[] res = new int[n];   
         int inf = 100000;
         int[][] e = new int[n][n];
         // init  ----   处理成边集 e[i][j] ==> i到j点的代价
         
         for (int i = 0;i < n;i++) {
             for (int j = 0;j < n;j++) {
                 if (i == j) e[i][j] = 0;
                 else e[i][j] = inf;
             }
         }
         for (int i = 0;i < edges.length;i++) {
            e[edges[i][0]][edges[i][1]] = edges[i][2];
            e[edges[i][1]][edges[i][0]] = edges[i][2];
          }

         // floyd 
         for (int k =0;k < n;k++) {
             for (int i = 0;i < n;i++) {
                 for (int j = 0;j < n;j++) {
                    if (e[i][j] > e[i][k] + e[k][j]) {
                        e[i][j] = e[i][k] + e[k][j];
                    }
                 }
             }
         }

         for (int i = 0;i < n;i++) {
             for (int j = 0;j < n;j++) {
                 if (e[i][j] <= distanceThreshold) {
                     res[i]++;
                 }
             }
         }
            int index = 0;
            int nums = res[0];
         for (int i = 1;i < n;i++) {
             if (res[i] <= nums) {
                 index = i;
                 nums = res[i];
             }
         }
         return index;
    }


}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值