python图像处理——图片区域颜色替换小工具

python图像处理——图片区域颜色替换小工具

使用场景

图片区域颜色替换小工具使用python开发,可用于选取图片相同颜色的区域,可设定选择精度,可自由选择颜色,将区域的颜色进行替换。可使用橡皮擦工具,包括圆形和矩形橡皮擦,可选择颜色对图片进行擦除操作。便于修饰图片。

工具使用说明

1.打开工具
在这里插入图片描述
2.点击选择文件选择要处理的图片
在这里插入图片描述
3.设定要替换的颜色,默认为黑色
在这里插入图片描述
弹出颜色选择框,点击需要的颜色
4.设定颜色处理的精度,默认为10
在这里插入图片描述
5.点击选择区域,在图片上选取区域内的点进行区域选择,可多次选择
在这里插入图片描述
6.若精度不合适,选取的区域不理想,可点击取消,重新选择,点击开始替换,则替换成功
在这里插入图片描述
7.可使用橡皮擦工具,设定橡皮擦的颜色,默认为白色,设定橡皮擦的大小和形状,可选择矩形和圆形
在这里插入图片描述
8.点击选择擦除,可用鼠标左键选择要擦除的地方
在这里插入图片描述
9.点击鼠标右键,可执行擦除,或直接点击右键擦除
在这里插入图片描述
10.点击完成,擦除成功
11.点击保存文件,可保存图片

重点代码

1.获取图片上某一点的颜色

pil_im = Image.open(showFile)  # 三维数组 打开文件
getcolor = pil_im.getpixel((x, y))

2.设置图片上某一点的颜色

pil_im.putpixel(
### 实现Python多线程并行图像处理Python中,为了提升图像处理的速度和效率,可以采用多线程技术来实现并行计算。由于CPU密集型操作受到全局解释器锁(GIL)的影响,在某些情况下可能不会显著加快速度;但对于I/O密集型任务或多核设备上的混合负载场景依然有效。 #### 创建线程池用于批量图片加载与预处理 使用`concurrent.futures.ThreadPoolExecutor`简化线程管理过程,它允许开发者轻松定义工作函数并通过提交任务给线程池执行的方式来进行并发运算[^1]。 ```python from concurrent.futures import ThreadPoolExecutor, as_completed import os from PIL import Image def process_image(image_path): try: with Image.open(image_path) as img: # 对图像做一些基本的操作比如调整大小、转换模式等 processed_img = img.resize((800, 600)).convert('L') save_name = f"{os.path.splitext(os.path.basename(image_path))[0]}_processed.jpg" processed_img.save(save_name) return {"status": "success", "file": save_name} except Exception as e: return {"status": "error", "message": str(e)} image_files = ["path/to/image1.png", "path/to/image2.png"] # 替换成真实的路径列表 with ThreadPoolExecutor(max_workers=4) as executor: # 设置最大线程数为4 futures = {executor.submit(process_image, file): file for file in image_files} for future in as_completed(futures): result = future.result() print(result["status"], ": ", result.get("file") or result.get("message")) ``` 此段代码展示了如何利用多线程加速一系列独立的图像文件读取及初步变换流程。每张图像是由单独的工作单元负责完成指定的任务链——打开原始文件->修改尺寸->转灰度化->保存新版本至磁盘。整个过程中涉及到了输入/输出等待时间,因此非常适合发挥出多线程的优势[^3]。 当面对更加复杂的计算机视觉算法时,则需考虑其他因素如内存占用情况以及是否真正属于可被分割成子任务的形式等问题。如果目标是在GPU上运行深度学习模型推理部分的话,那么应该探索基于PyTorch Lightning或者TensorFlow Serving之类框架下的分布式训练方案而不是单纯依靠增加更多Python级别的线程数量来解决问题[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值