用Anaconda管理多个Tensorflow gpu版本,并配置CUDA和cudnn(Win10系统)

本文介绍了如何在Windows 10系统中使用Anaconda创建和管理多个Tensorflow GPU版本的环境,包括安装CUDA和cudnn加速库。详细讲解了在Anaconda环境中安装特定版本的Tensorflow,以及处理不同版本CUDA和cudnn的兼容性问题,特别是手动安装低版本cudnn的方法,以确保与不同项目的需求匹配。
摘要由CSDN通过智能技术生成

用python和Tensorflow的同仁都理解,版本兼容性不好带来的麻烦。用Anaconda可以建立不同的环境(env),管理不同版本的python。在每一个环境中,可以安装一个Tensorflow。当Tensorflow调用GPU进行运算时,需要提前配置CUDA和cudnn这些加速库,并设置环境变量,这些都是老生常谈的问题。本文解决的问题是,如何在anaconda的各个环境中安装Tensorflow的各个GPU版本,并配置CUDA和cudnn加速库,使每个版本独立使用,并且都能顺利调用GPU进行运算。

本文的前提是你已经装好了anaconda。anaconda有一个导航界面navigator,在此可以直观地切换各个环境(也可以进行CMD命令操作,详细命令见本人博客《win10上Anaconda的常见命令》:https://blog.csdn.net/weixin_39153202/article/details/85089856)。

anaconda自带了tensorflow的几个版本,但默认安装都是最新版的,目前tensoflow到了1.12,。如果根据项目需要安装早期的指定版本,本人还是建议用CMD命令进行安装。

pip install tensorflow_gpu==1.5

之后是安装CUDA和cudnn库&

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值