用python和Tensorflow的同仁都理解,版本兼容性不好带来的麻烦。用Anaconda可以建立不同的环境(env),管理不同版本的python。在每一个环境中,可以安装一个Tensorflow。当Tensorflow调用GPU进行运算时,需要提前配置CUDA和cudnn这些加速库,并设置环境变量,这些都是老生常谈的问题。本文解决的问题是,如何在anaconda的各个环境中安装Tensorflow的各个GPU版本,并配置CUDA和cudnn加速库,使每个版本独立使用,并且都能顺利调用GPU进行运算。
本文的前提是你已经装好了anaconda。anaconda有一个导航界面navigator,在此可以直观地切换各个环境(也可以进行CMD命令操作,详细命令见本人博客《win10上Anaconda的常见命令》:https://blog.csdn.net/weixin_39153202/article/details/85089856)。
anaconda自带了tensorflow的几个版本,但默认安装都是最新版的,目前tensoflow到了1.12,。如果根据项目需要安装早期的指定版本,本人还是建议用CMD命令进行安装。
pip install tensorflow_gpu==1.5
之后是安装CUDA和cudnn库&