- 模型设定
生产函数:
Y = [ ∫ i = 0 A L ( i ) ϕ d i ] 1 / ϕ Y=[\int _{i=0}^AL(i)^\phi di]^{1/\phi} Y=[∫i=0AL(i)ϕdi]1/ϕ
成本最小化问题的拉格朗日函数为
L = ∫ i = 0 A p ( i ) L ( i ) d i − λ { [ ∫ i = 1 A L ( i ) ϕ d i ] 1 / ϕ − 1 } L=\int _{i=0}^A p(i)L(i)di-\lambda\{ {[\int _{i=1}^A L(i)^\phi di]^{1/\phi}}-1\} L=∫i=0Ap(i)L(i)di−λ{ [∫i=1AL(i)ϕdi]1/ϕ−1}
其中 p ( i ) p(i) p(i)表示专利持有人对每单位包含新思想 i i i的投入品所收取的价格。
则一阶条件为
p ( i ) = λ L ( i ) ϕ − 1 p(i)=\lambda L(i)^{\phi-1} p(i)=λL(i)ϕ−1
即
L ( i ) = [ λ p ( i ) ] 1 1 − ϕ L(i)=[\frac{\lambda}{p(i)}]^{\frac{1}{1-\phi}} L(i)=[p(i)λ]1−ϕ1
劳动市场的均衡要求
L A ( t ) + L Y ( t ) = L ‾ L_A(t)+L_Y(t)=\overline L LA(t)+LY(t)=