笔记:干扰项方差的无偏估计

给定一组样本 ( X i , Y i ) (X_i,Y_i) (Xi,Yi),模型 Y i = β 0 X i + μ i Y_i=\beta_0X_i+\mu_i Yi=β0Xi+μi的离差形式为:
y i = Y i − Y ‾ = β 1 x i + ( μ i − μ ‾ ) y_i=Y_i-\overline Y=\beta_1x_i+(\mu_i-\overline\mu) yi=YiY=β1xi+(μiμ)
样本回归函数的离差形式:
y ^ i = β ^ 1 x i \hat y_i=\hat \beta_1x_i y^i=β^1xi
所以
∑ e i 2 = ∑ ( y i − y ^ i ) 2 = ∑ [ ( β 1 − β ^ 1 ) x i + ( μ i − μ ‾ i ) ] 2 = ∑ ( β 1 − β ^ 1 ) 2 x i 2 + ∑ ( μ i − μ ‾ ) 2 + 2 ∑ ( β 1 − β ^ 1 ) x i ( μ i − μ ‾ i ) ] = ∑ ( β 1 − β ^ 1 ) 2 x i 2 + ∑ ( μ i − μ ‾ ) 2 − 2 ∑ ( ∑ k i μ i ) x i ( u i − μ ‾ ) = ∑ ( β 1 − β ^ 1 ) 2 x i 2 + ∑ ( μ i − μ ‾ ) 2 − ∑ x i μ i ∑ k i μ i + 2 μ ‾ ∑ x i ∑ k i μ i = ∑ ( β 1 − β ^ 1 ) 2 x i 2 + ∑ ( μ i − μ ‾ ) 2 − 2 ∑ x i μ i ∑ x i μ i ∑ x i 2 \sum e_i^2=\sum(y_i-\hat y_i)^2=\sum[(\beta_1-\hat \beta_1)x_i+(\mu_i-\overline \mu_i)]^2\\\quad\\=\sum(\beta_1-\hat\beta_1)^2x_i^2+\sum(\mu_i-\overline \mu)^2+2\sum(\beta_1-\hat\beta_1)x_i(\mu_i-\overline \mu_i)]\\\quad\\=\sum(\beta_1-\hat\beta_1)^2x_i^2+\sum(\mu_i-\overline \mu)^2-2\sum (\sum k_i\mu_i)x_i(u_i-\overline \mu)\\\quad\\= \sum(\beta_1-\hat\beta_1)^2x_i^2+\sum(\mu_i-\overline \mu)^2-\sum x_i\mu_i\sum k_i\mu_i+2\overline\mu\sum x_i\sum k_i\mu_i\\\quad\\= \sum(\beta_1-\hat\beta_1)^2x_i^2+\sum(\mu_i-\overline \mu)^2-2\sum x_i\mu_i\frac{\sum x_i\mu_i}{\sum x_i^2}

  • 1
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值