单调数列 --- 第 2^2 期习题答案

该博客探讨了数列{x_n}的收敛性,其中x_1=2, x_{n+1}=2+x_n。通过几何解释和Heine定理,证明了数列单调递增并收敛,利用蛛网工作法揭示了其收敛趋势。" 94168895,8580984,Python编程:函数实践与应用,"['Python编程', '函数操作', '数据处理', '模块化', '编程实践']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

练习 1 x 1 = 2 ,   x n + 1 = 2 + x n ,   n ∈ N + x_{1} = \sqrt{2},~x_{n+1} = \sqrt{2 + x_{n}},~n \in \mathbb{N}_{+} x1=2 , xn+1=2+xn , nN+。讨论数列 { x n } \{ x_{n} \} { xn} 的敛散性. 若收敛,求出极限.

证明

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值