数学分析思想方法第一期:计算或证明数列极限

本文由小张老师讲解如何使用放缩法计算和证明数列极限,详细介绍了放缩法的原理和应用,并通过例题1(xn=2nn5)的分析、证明和讨论,阐述了放缩法的关键在于找到适当的辅助数列,以证明数列的阶关系。
摘要由CSDN通过智能技术生成

大家好,这里是小张老师. 在计算数列极限中,有以下几种常用的方法:直接法、放缩法、两边夹法、阶比较法等. 下面小张老师将详细为大家介绍"放缩法".

放缩法

放缩法即“适当放大”. 如果我们的目标是证明 lim ⁡ n → ∞ x n = a \lim\limits_{n \rightarrow \infty} x_{n} = a nlimxn=a,那么最直接的思路便是解不等式 ∣ x n − a ∣ < ϵ |x_{n} - a| < \epsilon xna<ϵ. 这个不等式在绝大多数情况下是不可严格解出的,因此我们需要弱化这个问题. 注意到在数列极限的定义中,我们不需要严格地解出上面的不等式,只需要找到一个 N ∈ N + N \in \mathbb{N}_{+} NN+,使得当 n > N n > N n>N 时,不等式成立,即找不等式解集的一个子集即可.

如果可以将 ∣ x n − a ∣ | x_{n} - a | xna 放大成 f ( n ) f(n) f(n),且不等式 f ( n ) < ϵ f(n) < \epsilon f(n)<ϵ 较容易解出,那么我们便得到了一种求原不等式解集的子集的方式. 当然,我们必须对 { f ( n ) } \{f(n)\} { f(n)} 做一定的限制. 所谓“适当”放大,就是在保证 { f ( n ) } \{f(n)\} { f(n)} 仍是一个无穷小量的前提下,对目标极限进行放缩: ∣ x n − a ∣ ≤ f ( n ) | x_{n} - a | \leq f(n) xnaf(n)(在数列有限项之后成立也可). 如果不能保证 { f ( n ) } \{f(n)\} { f(n)} 是一个无穷小量,那么就是“放缩过度”.

综上所述

适当放大法就是要找一个辅助数列 f ( n ) f(n) f(n),满足:

  • ∣ x n − a ∣ ≤ f ( n ) | x_{n} - a | \leq f(n) xnaf(n)
    对数列的任意项或在数列的有限项之后成立;
  • { f ( n ) } \{f(n)\} { f(n)} 仍是一个无穷小量,且证明其是无穷小量较容易,

即不等式 f ( n ) < ϵ f(n) < \epsilon f(n)<ϵ 易于求解.


例题

例题 1 x n = n 5 2 n x_{n} = \frac{n^5}{2^n}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值