【技巧学习】英语速读技巧,提高英语文章的阅读速度

前言

创作开始时间:2021年6月25日22:22:11

【你想要的(英文)速读知识和技巧】 如题,最近经常读英语文章,感觉自己速度还是不够快,这里想系统地学习一下。

1、基本理论

速读,speed reading:快速而有效的阅读,是一种在不影响理解和记忆的情况下,提升阅读速率的阅读方法。用到的方法常包括有各种心理学技巧,例如:组块化(英语: chunking)、去除默读等。

速读的原理:

  • 扩大视野:使得可阅读字数增加
  • 眼脑直映:眼睛看到,头脑直接反映。

速读的原理便在于改变原本一行一行逐字念出或默念的习惯,养成眼脑直映(“眼睛看”→“头脑想与记忆”)的阅读习惯,则看书可一眼看一行以上,或将多行文字以形成一个画面的方式,看整个页面。

速读的技巧:

  • 略读:略过不关键的信息。
  • 后设引导:使用手等辅助阅读。

2、阅读速度测试

在这里测试:http://www.readingsoft.com/

在这里插入图片描述

不得不说,我有点菜。

3、提高阅读速度的技巧

  1. 避免干扰、分心(就是说要集中注意力)
  2. 放轻松
  3. 知道你想从这篇文章中得到什么(有助于你把握重点)
  4. 多练(有意识的训练)

貌似碰到一个更高级的(宣称从未失败的方法):Scientific Speed Reading: How to Read 300% Faster in 20 Minutes (2009年)
我看了之后,感觉讲了一些方法,具体就是要1)减少回读和重复阅读,从而提高阅读速度;2)扩大自己的视角。 但是总言之,可能是我没看太懂或者没练,感觉没那么神奇。

参考:How to Read Faster: 10 Ways to Increase Your Reading Speed

  • 停止内心默读:有用
  • 字分块:这个有用
  • 停止reread(重读)
  • 使用外围视觉(peripheral vision):一次读一行,视觉中心关注行中间,视野周围关注其余。
  • 使用计时器
  • 设定目标
  • 多阅读(read more!) :很实在的建议。
  • 用记号笔,指导视线的移动,读一行挪一行:感觉没必要
  • 提高自己的词汇量

参考:5 Tips to Read Faster in English 这个讲了点真东西,有参考价值。

  1. 扩充词汇量:下载单词app
  2. 大声读出来:前期
  3. 积极阅读:带着问题去读
  4. 跳读:跳过介词,代词,限定词
  5. 扫读:只读领域、问题相关的关键词。比跳读还快。

小结

系统的学习了一下,还是有用的。

主要还是在于:
在理解自己想获取的知识上,最大限度的筛减文字,只读最有用、最相关的文字。

另外,还有一些speed reading test的网站,

http://www.freereadingtest.com/

另外,深刻感受到自己在英语能力上的不足,在学术角度来说的话,还是需要进一步提升的。以后的碎片化时间还是要用起来。

创作结束时间:2021年6月26日13:10:48
2021年6月26日13:27:29

参考文献

数据集介绍:多类别动物目标检测数据集 一、基础信息 数据集名称:多类别动物目标检测数据集 图片数量: - 训练集:6,860张图片 - 验证集:1,960张图片 - 测试集:980张图片 总计:9,800张含动态场景的动物图像 分类类别: Alpaca(羊驼)、Camel(骆驼)、Fox(狐狸)、Lion(狮子)、Mouse(鼠类)、Ostrich(鸵鸟)、Pig(猪)、Rabbit(兔子)、Rhinoceros(犀牛)、Shark(鲨鱼)、Sheep(绵羊)、Snake(蛇)、Whale(鲸鱼) 标注格式: YOLO格式标注,包含目标检测所需的归一化坐标及类别索引,适用于YOLOv5/v7/v8等系列模型训练。 数据特性: 覆盖航拍、地面视角等多种拍摄角度,包含动态行为捕捉及群体/单体目标场景。 二、适用场景 野生动物监测系统: 支持构建无人机/红外相机AI识别系统,用于自然保护区动物种群追踪与生态研究。 智慧农业管理: 适用于畜牧养殖场动物行为分析、数量统计及健康监测等自动化管理场景。 生物多样性研究: 为陆地/海洋生物分布研究提供标注数据支撑,助力濒危物种保护项目。 教育科研应用: 可作为计算机视觉课程实践素材,支持目标检测、迁移学习等AI教学实验。 三、数据集优势 跨物种覆盖全面: 包含13类陆生/水生动物,涵盖家畜、野生动物及濒危物种,支持复杂场景下的模型泛化训练。 动态场景丰富: 捕捉动物运动、群体互动等真实行为模式,提升模型对非静态目标的检测鲁棒性。 标注体系规范: 严格遵循YOLO标注标准,提供精确的边界框定位,支持即插即用的模型训练流程。 多场景适配性: 数据来源涵盖航拍影像、地面监控等多维度视角,适用于农业、生态保护、科研等跨领域应用。 类别平衡优化: 通过分层抽样保证各类别数据分布合理性,避免长尾效应影响模型性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值