具体代码见 github
1两层神经网络
标准差0.1,在这里随机生成的比标准差两倍大会被替换
完整代码见github
还不如单层神经网络,最主要超参数设置是否合理
两侧在自己电脑上跑了540s、、、、。略慢
2三层神经网络构建
3神经网络的层次是不是越多越好?
不是, 层数过多,训练时间越长,需要的数据越大, 有可能过拟合,需要根据情况来选择层数
4模型重构
全连接层如上写会比较复杂,容易搞混,所以全连接层有新写法
完整代码见github
5训练模型的保存
每个轮次保存3个文件,下图中第5第10第15没了因为最多保存5份文件,这3个文件最后加一个check
6模型还原
选取文件会自动取最后一份读取
checkpoint得到保存模型最新的状态