1变化的电磁场能产生电流
奥斯特在1819年发现稳定的电流产生稳定的磁场,不久法拉第觉得也许稳定的磁场也能产生稳定的电流,他就做了如下图的实验。实验中电流通过螺线管产生稳定的磁场,在螺线管外有电路二,在前期实验中电路二一直没有电流产生,直到他有一天开关电路中发现了线路二有电流,于是法拉第得出了结论,变化的电磁场能产生电流。
2楞次定律
如上图将一根磁铁靠近线圈,线圈会产生电流从而电磁场,产生电磁场方向与电磁场改变的方向相反,电流想反抗电磁场的变化,这就叫楞次定律
3法拉第电磁感应定律
磁通量的定义
楞次定律是永远反抗磁通变化的,下图公式中,感生电动势公式中下图有负号。
法拉第电磁感应定律
顺时针dA将进入黑板,垂直于黑板
逆时针dA朝向你
面不一定要是平的,可以使平的也可以是如帽子一样的曲面,可以想象磁通是水流穿过袋子,出去的面可以是平面也可以是袋子外表面的曲面。
基尔霍夫曾说过EdL的闭合路径积分总是0,但是这只在保守场中成立,当有变化的磁通时这并不成立,当你有一个变化的磁通,此时导线内部的电场会变成非保守的,基尔霍夫定律只有在保守场中才成立
当你在保守场中EdL跟路径无关,从1点到2点,积分与路径无关,是两点间的电势差,然而又磁通变化后,绕圈数3圈是1圈的电势差的三倍,因为此时处理的是非保守场。
4案例
如图一个电源1v两个电阻分别为100欧姆和900欧姆,可以得到D,A之间为0.9v,如下图将电源换位向外的螺线管。假设螺线管产生的感生电流也是1v。可得:左侧电压表DA为-0.1v右侧为0.9v
基尔霍夫定律只是法拉第定律的特例
基尔霍夫定律说必须为0,法拉第定律进行修正,这个1v为EdL所做的环路闭合积分,所以当你用EdL来定义电动势,在非保守场,这与路径有关
上图实验证明可看出,右边的电压变化是左边的十倍。