何为秩
矩阵的秩反映了矩阵行列的相关性。经过初等变化后,矩阵有r个非零行,则其秩为r,如果矩阵的行列之间都是线性无关的,那么该矩阵就是满秩的矩阵。
何为低秩
如果X是一个m行n列的数值矩阵,rank(X)是X的秩,假如rank (X)远小于m和n,则我们称X是低秩矩阵。低秩矩阵每行或每列都可以用其他的行或列线性表出,可见它包含大量的冗余信息。利用这种冗余信息,可以对缺失数据进行恢复,也可以对数据进行特征提取。
何为低秩分解
目的:去除冗余,并且减少权值参数
方法:采用两个K1的卷积核替换掉一个KK的卷积核(decompose the K convolutions into two separable convolutions of size 1 × K and K × 1)
原理:权值向量主要分布在一些低秩子空间,用少数基来重构权值矩阵
用低秩的矩阵代替原先的矩阵,可以减少参数量,也就减少了计算量。
具体参照:https://www.cnblogs.com/missidiot/p/9869182.html