NLP--1

1 NLP,一种交叉学科使自然语言access to电脑

  • 交流,输入输出
  • 理解,获得、使用信息 情感内容
  • 语言协助(检查语法连贯)
    2 相关领域
  • 计算机语言学- 提供architectural inspiration for NLP
    systems.;NLP更关注design 和分析自然语言的方法
  • AI 语言与概念**,表示和推理能力**相互依赖,knowlege的获取需要从自然语言输入中提取信息能力;
    -ML :NLP依赖ML,用监督,半监督,强化学习
    text是离散信号,用ML模型处理此类信号的输入和输出的泛化
  • Speech处理:不是NLP的一部分,NLP apps提供为其提供输入;语言建模在二者之中都重要
    3 自然语言长度差别大,varies
  • pipeline of modulespipeline模型
    在这个通用管道的元素之上构建专门的NLP应用程序,作为相对简单的附加内容。
  • end-to-end
    transform the raw input to the required output without specialized linguistic analyzer modules.
  • 当前 很多人用some universal analyzer modules for word segmentation or stemming
    然后也用 ML models 跳过一些 traditional pipeline steps,产生需要的输出
    4 迁移学习
    end-to-end pretrained on unsupervised tasks on very large text collections
    保留预训练weight(小调整)再加一些浅层形成专用模型
    类似于传统的pipeline的成分一些学习morphology,一系诶学习semantics、
    5 监督NLP->优化问题
    在这里插入图片描述
    预测,scoring function(model),
    x,y的内部结构可能复杂,y可以是树
    6 学习的过程就是找到最优参数的过程,在监督数据上用数值优化方法
    search的过程是找到最好的y对某个x,输出argmax,Y(x)有时很大 例如parse树,需要结合优化
    7 relational perspective 概念 语义联系 在utterance 表达
    (怎么知道cat在动物类别里)
    8 compositional perspective 分析meaning表达 根据内部组成结构
    un|bear|able|s
    9 distributional 角度 不知道意思也不知道部分的意思。利用相似的distribution
    好处是自动学习从large but unlabeled text collections 不用专业知识和符号
    也有弊端,例如罕见词, 以及无法提供为什么可以从这些相似的distribution学习相似性

参考

  • Dan Jurafsky and James H. Martin,
    Speech and Language Processing 3rd ed.
    https://web.stanford.edu/∼jurafsky/slp3.
  • Jacon Eisenstein,
    Natural Language Processing.
    https://github.com/jacobeisenstein/gt-nlp-class.
  • https://spacy.io/usage/processing-pipelines
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值