数论-莫比乌斯反演

(数论-莫比乌斯反演)

小学生一发

一篇比较数学的博客,最近在学习莫比乌斯反演,这是数论上比较重要的一个定理,平时刷数论的题目也比较容易遇到,所以还是书此文来加深一下印象。

莫比乌斯反演的引入

考虑如下求和函数:
F ( n ) = ∑ d ∣ n f ( d ) F(n)=\displaystyle\sum_{d|n}f(d) F(n)=dnf(d)
我们有如下结论:
f ( n ) = ∑ d ∣ n μ ( d ) F ( n d ) f(n)=\displaystyle\sum_{d|n} \mu(d)F(\frac{n}{d}) f(n)=dnμ(d)F(dn)
μ ( x ) \mu(x) μ(x)的定义如下:
x = 1 x=1 x=1时, μ ( x ) = 1 \mu(x)=1 μ(x)=1, 当 x = p 1 p 2 p 3 … p n x=p_1p_2p_3\dots p_n x=p1p2p3pn ( p p p为不同的质数,且次数都为1), μ ( x ) = ( − 1 ) n \mu(x)=(-1)^n μ(x)=(1)n, 其余情况 μ ( x ) = 0 \mu(x)=0 μ(x)=0, μ ( x ) \mu(x) μ(x)为积性函数.
积性函数定义为:
积性函数:对于任意互质的整数 a a a b b b有性质$f(ab)=f(a)f(b)的数论函数。(证明比较简单就不说了)

莫比乌斯反演定理

f ( n ) f(n) f(n) g ( n ) g(n) g(n)是定义在正整数集合上的两个函数,定义如下:
f ( n ) = ∑ d ∣ n g ( d ) = ∑ d ∣ n g ( n d ) f(n)=\displaystyle\sum_{d|n} g(d)=\displaystyle\sum_{d|n} g(\frac{n}{d}) f(n)=dng(d)=dng(dn)
g ( n ) = ∑ d ∣ n μ ( d ) f ( n d ) = ∑ d ∣ n μ ( n d ) f ( d ) g(n)=\displaystyle\sum_{d|n} \mu(d)f(\frac{n}{d})=\displaystyle\sum_{d|n} \mu(\frac{n}{d})f(d) g(n)=dnμ(d)f(dn)=dnμ(dn)f(d)
f ( n ) = g ( n ) f(n)=g(n) f(n)=g(n).

莫比乌斯反演定理证明

充分性证明:
f ( n ) = ∑ d ∣ n g ( d ) = ∑ d ∣ n g ( n d ) f(n)=\displaystyle\sum_{d|n} g(d)=\displaystyle\sum_{d|n} g(\frac{n}{d}) f(n)=dng(d)=dng(dn)
∑ d ∣ n μ ( d ) f ( n d ) = ∑ d ∣ n μ ( d ) ∑ d 1 ∣ n d g ( d 1 ) \displaystyle\sum_{d|n}\mu(d)f(\frac{n}{d})=\displaystyle\sum_{d|n} \mu(d)\displaystyle\sum_{d1|\frac{n}{d}}g(d_1) dnμ(d)f(dn)=dnμ(d)d1dng(d1)
∑ d ∣ n ∑ d 1 ∣ ( n d ) μ ( d ) g ( d 1 ) \displaystyle\sum_{d|n} \displaystyle\sum_{d_1|(\frac{n}{d})} \mu(d)g(d_1) dnd1(dn)μ(d)g(d1)
∑ d 1 ∣ n ∑ d ∣ n d 1 μ ( d ) g ( d 1 ) = ∑ d 1 ∣ n g ( d 1 ) ∑ d ∣ n d 1 μ ( d ) = g ( n ) \displaystyle\sum_{d_1|n} \displaystyle\sum_{d|\frac{n}{d_1}} \mu(d)g(d_1)=\displaystyle\sum_{d_1|n} g(d_1) \displaystyle\sum_{d|\frac{n}{d_1}} \mu(d)=g(n) d1ndd1nμ(d)g(d1)=d1ng(d1)dd1nμ(d)=g(n)

考虑到:
∑ d ∣ n d 1 μ ( d ) = ( 1 , d 1 = n 0 , d 1 < n ) \displaystyle\sum_{d|\frac{n}{d_1}} \mu(d)=\binom{1,d_1=n}{0,d_1<n} dd1nμ(d)=(0,d1<n1,d1=n)
因此
f ( n ) = ∑ d ∣ n g ( d ) = ∑ d ∣ n g ( n d ) f(n)=\displaystyle\sum_{d|n} g(d)=\displaystyle\sum_{d|n} g(\frac{n}{d}) f(n)=dng(d)=dng(dn)
g ( n ) = ∑ d ∣ n μ ( d ) f ( n d ) = ∑ d ∣ n μ ( n d ) f ( d ) g(n)=\displaystyle\sum_{d|n} \mu(d)f(\frac{n}{d})=\displaystyle\sum_{d|n} \mu(\frac{n}{d}) f(d) g(n)=dnμ(d)f(dn)=dnμ(dn)f(d)

必要性证明同理;

莫比乌斯反演的性质

  1. f ( n ) = ∑ d ∣ n μ ( d ) F ( n d ) f(n)=\displaystyle\sum_{d|n} \mu(d)F(\frac{n}{d}) f(n)=dnμ(d)F(dn)
  2. μ ( n ) \mu(n) μ(n)是积性函数
  3. f f f是算术函数,它的和函数 F ( n ) = ∑ d ∣ n f ( d ) F(n)=\displaystyle\sum_{d|n} f(d) F(n)=dnf(d)是积性函数,那么 f f f也是积性函数

新的开始,每天都要快乐哈。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值