数论

莫比乌斯反演+线性逆元

题目-势能之和

在学习了最小公倍数之后,花椰妹出了一道题打算考考蒜头君。
她给出了 n n n个整数 a i a_i ai,并令它们的积为 S S S,即 S = a 1 ⋅ a 2 ⋅ a 3 ⋯ a n S=a_1 \cdot a_2 \cdot a_3 \cdots a_n S=a1a2a3an
n n n个正整数组成多重集合,一共有 2 n − 1 2^n-1 2n1个真子集。对于一个包含 m m m个数的子集 a k 1 , a k 2 , ⋯   , a k m {a_{k_1}, a_{k_2}, \cdots , a_{k_m}} ak1,ak2,,akm, 蕴含的势能为 L C M ( S a k 1 , S a k 2 , ⋯   , S a k m ) LCM(\frac{S}{a_{k_1}}, \frac{S}{a_{k_2}}, \cdots ,\frac{S}{a_{k_m}}) LCM(ak1S,ak2S,,akmS), 期中 L C M LCM LCM表示最小公倍数。
请求出所有真子集的势能之和,蒜头君不会做,只能来向你求助。因为答案很大,只需求出答案对 1 0 9 + 7 10^9+7 109+7取模的结果。

输入格式

第一行一个整数 n n n, 表示元素的个数。
第二行 n n n个正整数 a i a_i ai,用空格分隔。
( 1 ≤ n ≤ 1 6 , 1 ≤ a i ≤ 1 0 6 ) (1 \leq n \leq 1^6, 1 \leq a_i \leq 10^6) (1n16,1ai106)

输出格式

一个整数,表示势能之和对 1 0 9 + 7 10^9+7 109+7取模的结果。

解析

首先注意到 L C M ( a , b ) = a b G C D ( a , b ) LCM(a,b)=\frac{ab}{GCD(a,b)} LCM(a,b)=GCD(a,b)ab, 那么 L C M ( S a k 1 , S a k 2 , ⋯   , S a k m ) = S G C D ( a 1 , a 2 , ⋯   , a n ) LCM(\frac{S}{a_{k_1}}, \frac{S}{a_{k_2}}, \cdots ,\frac{S}{a_{k_m}})=\frac{S}{GCD(a_1, a_2, \cdots, a_n)} LCM(ak1S,ak2S,,akmS)=GCD(a1,a2,,an)S, 那么问题就是要求对于每个数 i i i,有多少个真子集的最大公约数为 i i i。直接求这个问题显然有点麻烦,我们可以考虑求有多少个数为 i i i的倍数,然后再用莫比乌斯反演求解。在求解连续数的逆元时采用了线性递推求逆元(新get的技能)。

AC代码

//  小学生一发的刷题之路
//
//  数论gcd+莫比乌斯反演大法
//
//

#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <algorithm>
#include <queue>
#include <deque>                //双向队列;
#include <cmath>
#include <set>
#include <stack>
#include <map>
#include <vector>
#include <cstdlib>
#include <iomanip>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
const double PI=acos(-1.0);
const double eps=1e-8;
const int maxn=1e6+5;
const int maxm=1e6+5;
const ll mod=1e9+7;
const int INF=1e8;
template<class T>
inline void read(T &ret){       //快速输入模版;
    ret=0;
    int f=1;
    char c=getchar();
    while(c<'0'||c>'9'){
        if(c=='-') f=-1;
        c=getchar();
    }
    while(c>='0'&&c<='9'){
        ret=ret*10+c-'0';
        c=getchar();
    }
    ret*=f;
}
template <class T>
inline void out(T ret){     //快速输出模版;
    if(ret>9)
    {
        out(ret/10);
    }
    putchar(ret%10+'0');
}

ll inv[maxn],b[maxn],cnt[maxn],u[maxn];
ll n,a,ans[maxn];
bool flag[maxn];

void seive(){
    //筛法求解莫比乌斯变化中的u;
    memset(u,0,sizeof(u));
    u[1]=1;
    memset(flag,0,sizeof(flag));
    for(int i=2;i<=1e6;i++){
        if(!flag[i]){               //已被标记的非质数;
            for(int j=i;j<=1e6;j+=i){
                if(u[j]==-1){
                    continue;
                }
                if((j/i)%i==0){     //包含非质因子;
                    u[j]=-1;
                }else{
                    u[j]++;
                }
                flag[j]=1;
            }
        }
    }
    for(int i=2;i<=1e6;i++){
        if(u[i]==-1){
            u[i]=0;
        }else if(u[i]%2){           //奇数个质因子;
            u[i]=-1;
        }else{                      //偶数个质因子;
            u[i]=1;
        }
    }
}

void init(){
    //线性递推求连续数的逆元;
    inv[1]=1;
    for(int i=2;i<=1e6;i++){
        inv[i]=(inv[mod%i])*(mod-mod/i)%mod;
    }
    //计算2的幂次方;
    b[0]=1;
    for(int i=1;i<=1e6;i++){
        b[i]=(b[i-1]*2)%mod;
    }
}

int main()
{
    seive();
    init();
    memset(cnt,0,sizeof(cnt));
    read(n);
    ll S=1;
    for(int i=1;i<=n;i++){
        read(a);
        S=(S*a)%mod;
        cnt[(int)a]++;           //统计这个数出现的次数;
    }
    
    int tmp;
    for(int i=1;i<=1e6;i++){
        tmp=0;
        for(int j=i;j<=1e6;j+=i){     //计算每个数倍数的个数;
            tmp+=cnt[j];
        }
        ans[i]=(b[tmp]-1+mod)%mod;
    }
    ll sum=0;
    for(int i=1;i<=1e6;i++){
        tmp=1e6/i;
        for(int j=2;j<=tmp;j++){
            ans[i]=(ans[i]+ans[j*i]*u[j]+mod)%mod;          //莫比乌斯反演过程;
        }
        sum=(sum+ans[i]*S%mod*inv[i])%mod;
    }
    printf("%lld\n",sum);
    return 0;
}

新的开始,每天都要快乐哈。
在这里插入图片描述

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值