信号分解是一种可以将复杂的观测信号分解为若干子信号的时频分析技术。该技术可以通过分解得到的子信号来有效表征观测信号内部的时频特性,进而能够从观测信号中提取出有用信息。因此,信号分解在信号处理领域中发挥着重要的作用。
傅里叶分解是早期常用的信号分解方法,最初被提出用于分析热过程,该方法可以将信号表征为多个正弦波和余弦波的线性组合,并且能够实现信号从频域到时域的转换,可以很好的反映出信号的时频特性,有利于研究学者在频域处理和分析观测信号。而之后提出的快速傅里叶变换,更是大大地减少了傅里叶分解在离散实数域中的运算成本,使其实用性获得了显著提高。然而,傅里叶分解是一种全局变换,其适用性局限于平稳(信号的频率不随时间变化而变化)信号和线性系统。在实际生活中,观测信号往往是(信号的频率随时间变化而变化)非平稳和非周期的。傅里叶分解只能够反映出观测信号内所含有的频率成分,而并不能反映出信号的频率随时间变化的细节信息。而这些细节信息往往是人们所要关注的,例如:音乐声中音调的变化和灯光秀中光照的变化。
短时傅里叶变换被提出用于解决上述问题。该方法的基本思想是:设定一个可以使分析信号在局部时间区间内进行时频转换的窗函数,假设观测信号在一个宽度较短的时间区间内是接近于平稳的,移动窗函数使信号在不同的有限时间区间内近似是平稳信号,从而同时得到时间和频率信息。当信号的震荡次数比较频繁时,则需要有较长的时间窗口来保证较高的时间分辨率;而当信号是变化比较平缓的低频信号时,则需要有较短的时间窗口来保证较高的频率分辨率。然而,短时傅里叶变换窗函数受到不确定准则的限制,并不能同时满足频率与时间分辨率的要求。
随后,小波分析应运而生。小波分析是一种著名的时频分析方法,并且能够通过滤波器组来实现。小波分析将输入信号分解为子带分量