Python环境下一维时间序列的高斯均值滤波分解方法

本文介绍了信号分解在信号处理中的重要性,从傅里叶分解、快速傅里叶变换到短时傅里叶变换和小波分析,探讨了它们在处理平稳与非平稳信号上的局限。特别强调了自适应信号分解方法如EMD和SSA,以及新提出的高斯均值滤波分解方法,这些技术在非稳态信号分析和实际应用中的优势和潜力。
摘要由CSDN通过智能技术生成

信号分解是一种可以将复杂的观测信号分解为若干子信号的时频分析技术。该技术可以通过分解得到的子信号来有效表征观测信号内部的时频特性,进而能够从观测信号中提取出有用信息。因此,信号分解在信号处理领域中发挥着重要的作用。

傅里叶分解是早期常用的信号分解方法,最初被提出用于分析热过程,该方法可以将信号表征为多个正弦波和余弦波的线性组合,并且能够实现信号从频域到时域的转换,可以很好的反映出信号的时频特性,有利于研究学者在频域处理和分析观测信号。而之后提出的快速傅里叶变换,更是大大地减少了傅里叶分解在离散实数域中的运算成本,使其实用性获得了显著提高。然而,傅里叶分解是一种全局变换,其适用性局限于平稳(信号的频率不随时间变化而变化)信号和线性系统。在实际生活中,观测信号往往是(信号的频率随时间变化而变化)非平稳和非周期的。傅里叶分解只能够反映出观测信号内所含有的频率成分,而并不能反映出信号的频率随时间变化的细节信息。而这些细节信息往往是人们所要关注的,例如:音乐声中音调的变化和灯光秀中光照的变化。

短时傅里叶变换被提出用于解决上述问题。该方法的基本思想是:设定一个可以使分析信号在局部时间区间内进行时频转换的窗函数,假设观测信号在一个宽度较短的时间区间内是接近于平稳的,移动窗函数使信号在不同的有限时间区间内近似是平稳信号,从而同时得到时间和频率信息。当信号的震荡次数比较频繁时,则需要有较长的时间窗口来保证较高的时间分辨率;而当信号是变化比较平缓的低频信号时,则需要有较短的时间窗口来保证较高的频率分辨率。然而,短时傅里叶变换窗函数受到不确定准则的限制,并不能同时满足频率与时间分辨率的要求。

随后,小波分析应运而生。小波分析是一种著名的时频分析方法,并且能够通过滤波器组来实现。小波分析将输入信号分解为子带分量࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哥廷根数学学派

码字不易,且行且珍惜

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值