Python环境下一维时间序列的高斯均值滤波分解方法

本文介绍了信号分解在信号处理中的重要性,从傅里叶分解、快速傅里叶变换到短时傅里叶变换和小波分析,探讨了它们在处理平稳与非平稳信号上的局限。特别强调了自适应信号分解方法如EMD和SSA,以及新提出的高斯均值滤波分解方法,这些技术在非稳态信号分析和实际应用中的优势和潜力。
摘要由CSDN通过智能技术生成

信号分解是一种可以将复杂的观测信号分解为若干子信号的时频分析技术。该技术可以通过分解得到的子信号来有效表征观测信号内部的时频特性,进而能够从观测信号中提取出有用信息。因此,信号分解在信号处理领域中发挥着重要的作用。

傅里叶分解是早期常用的信号分解方法,最初被提出用于分析热过程,该方法可以将信号表征为多个正弦波和余弦波的线性组合,并且能够实现信号从频域到时域的转换,可以很好的反映出信号的时频特性,有利于研究学者在频域处理和分析观测信号。而之后提出的快速傅里叶变换,更是大大地减少了傅里叶分解在离散实数域中的运算成本,使其实用性获得了显著提高。然而,傅里叶分解是一种全局变换,其适用性局限于平稳(信号的频率不随时间变化而变化)信号和线性系统。在实际生活中,观测信号往往是(信号的频率随时间变化而变化)非平稳和非周期的。傅里叶分解只能够反映出观测信号内所含有的频率成分,而并不能反映出信号的频率随时间变化的细节信息。而这些细节信息往往是人们所要关注的,例如:音乐声中音调的变化和灯光秀中光照的变化。

短时傅里叶变换被提出用于解决上述问题。该方法的基本思想是:设定一个可以使分析信号在局部时间区间内进行时频转换的窗函数,假设观测信号在一个宽度较短的时间区间内是接近于平稳的,移动窗函数使信号在不同的有限时间区间内近似是平稳信号,从而同时得到时间和频率信息。当信号的震荡次数比较频繁时,则需要有较长的时间窗口来保证较高的时间分辨率;而当信号是变化比较平缓的低频信号时,则需要有较短的时间窗口来保证较高的频率分辨率。然而,短时傅里叶变换窗函数受到不确定准则的限制,并不能同时满足频率与时间分辨率的要求。

随后,小波分析应运而生。小波分析是一种著名的时频分析方法,并且能够通过滤波器组来实现。小波分析将输入信号分解为子带分量,每个子带分量都位于不同的频带。然后根据这些子带组件的特性定制子带处理单元。由于滤波器组系统利用了输入信号的频率特性,因此通常能获得很好的性能。小波分析的功能主要是由平移因子和尺度因子来实现。首先,通过改变平移因子,使得不同尺度的小波基在时间上进行平移,进而可以分析不同时间段内信号频率的变化,从而实现时频分析;其次,通过改变尺度因子,将信号线性投影到一个宏观尺度的预定义的小波基上,得到宏观分量。然后,将宏观分量进一步线性投影到相同或不同的预定义小波基上,得到细节分量,从而实现多尺度分析。由于这两个上述的优点,使得小波分析能够在高频信号处来保证较高的时间分辨率和在低频信号处保证较高的频率分辨率,小波分析也因此被称为“数学显微镜”,并有着广泛的应用。但是,小波分析在使用前需要预先设定小波基,而设定好的小波基的适用性局限于某些信号,因此,小波分析缺乏自适应性。

自适应信号分解是一类能够有效克服上述方法存在的缺陷的非线性信号分析,适用于非稳态信号的分析。EMD是由美国科学院院士黄颚在1998年所提出的一种自适应(数据驱动)信号分解技术。通过筛选过程,EMD将观测信号自适应表征为称为IMFs的振荡分量之和。由于这是一个自适应过程,这种分解依赖于信号本身,而不是任何预定义的基函数。另一方面,EMD是将原始信号的固有时间尺度从微观的时间尺度(高频分量)依次提取到宏观的时间尺度(低频分量)的一种自适应和非线性的时频表征。此外,由于这是一个非线性过程,在实际应用中和理论研究中被应用于非稳态信号分析。

而奇异谱分析SSA同样也是将原始信号表征为多个可阐释的SSA分量的叠加的自适应和非线性的信号时频分析技术。SSA是进行基于子空间的时间序列分析和预测的有用工具。SSA根据原信号本身构造出轨迹矩阵,并对轨迹矩阵及其转置矩阵的乘积进行特征值分解而得到特征值和相应的特征向量。然后,由特征值和相应的特征向量能进一步获得二维SSA矩阵。最后经过去汉克尔化过程,二维SSA矩阵被转化为代表着原信号不同成分的一维SSA分量。SSA同样也在非稳态信号分析中有着广泛的应用。

非线性自适应的信号分解方法,能够适用于许多复杂非稳态信号的处理,从而能够提取出有效信息用于信号时频分析。因此,不少研究学者将其应用到实际的场景中,如:缺陷检测,医学诊断和信号去噪等等,具有一定的研究意义。基于此,提出一种新的自适应信号分解方法-高斯均值滤波分解方法,可用于一维时间序列信号的分解,程序运行环境为Python,给出了两个信号分解的例子,所用模块如下:

     import matplotlib
     import matplotlib.pyplot as plt
     import numpy as np
     from numpy import linalg as LA
     from scipy import signal
     from scipy import ndimage
     from scipy.ndimage import gaussian_filter1d
     import math

出图如下:

完整代码:Python环境下一维时间序列的高斯均值滤波分解方法

工学博士,担任《Mechanical System and Signal Processing》审稿专家,担任《中国电机工程学报》优秀审稿专家,《控制与决策》,《系统工程与电子技术》,《电力系统保护与控制》,《宇航学报》等EI期刊审稿专家。

擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哥廷根数学学派

码字不易,且行且珍惜

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值