去除图像竖直(垂直)条纹算法

本篇博文来自博主Imageshop,更多内容可以移步至Imageshop查看。

转载自:https://www.cnblogs.com/Imageshop/p/13380435.html 侵删

 最近一个朋友发了一个效果图,是关于条纹去除的,问我有没有什么好的方法,实现这个功能,给我的参考图片如下所示:

 

   我这里提出两个解决方案:

      方案1: 使用带通滤波器,基于FFT的,这个应该是最为标准的答案,详细的参考代码可以见ImageJ软件的BandPass Filer,具体路径为ImageJ\source\ij\plugin\filter\FFTFilter.java。界面如下所示:

      

  得到的结果大概如下所示:

     

 其原理就是竖直条纹在频谱图上表现为一条水平线,我们就要把这条水平线消除,反馈到RGB空间就没有条纹了。         

        

   上面的处理后的图像还有些模糊,原因是ImageJ这个插件对其他位置的频谱也处理掉了一些(上面有图的Filter除水平黑线之外的其他黑色区域),如果用于工业实践,可再次适当修改下代码。

  在网上另外找了一个测试图像,效果也还算可以:    

        

   方案2: 使用GIMP里的Destripe算法,该算法位于gimp-master\plug-ins\common\destripe.c文件中,其核心过程其实也很简单,他接受一个输入参数,窗口宽度,在内部他计算指定宽度内,研图像高度方向所有像素的平均值,然后以这个平均值和当前像素的差异作为一个特征,带入到后续的一个增强算式中,核心就是下面两句代码,这个其实是用X方向的图像信息来弥补Y方向的信息的一种手段。

    *c = ((sum / cnt - *h) << 10) / *h;

    *rows = MIN (255, MAX (0, *rows + (*rows * *c >> 10) ));

    这个算法的结果如下:

       

 对这个图的处理效果还是很不错的。不过他的通用型没有基于FFT的完美,比如上面第二个测试图像,他的结果如下所示:   

        

    但是他的优点就是速度非常快,所以还是要根据不同的需求来使用不同的算法把。

    本文Demo下载地址:  http://files.cnblogs.com/files/Imageshop/SSE_Optimization_Demo.rar,基于FFT的BandPass Filter详见菜单 FFT-> BandPass Filter,基于GIMP那个算法详见:Detection -> Audilairay Enhance-> Destripe菜单。

  如果是去除水平条纹,其实也是采用类似的算法。

### MATLAB 中实现条形码检测的方法 #### 使用内置函数 `imread` 和 `imshow` 为了读取图像并显示,可以利用MATLAB中的基本图像处理工具箱。这一步骤对于加载待检测的条形码图片至关重要[^1]。 ```matlab % 读取含有条形码的图像文件 img = imread('barcode_image.jpg'); % 显示原始图像 figure; imshow(img); title('Original Image with Barcode'); ``` #### 转换为灰度图 由于彩色信息对条形码识别不是必需的,因此通常会先将输入图像转换成灰度形式来简化后续处理过程。 ```matlab grayImg = rgb2gray(img); % 如果图像是RGB格式,则转为灰度图 if isrgb(img) grayImg = rgb2gray(img); else grayImg = img; % 若已经是灰度图则保持不变 end ``` #### 应用边缘检测算法 通过Canny算子或其他合适的边缘检测方法增强条形码区域内的对比度,使得垂直线条更加明显以便于下一步解析操作。 ```matlab edges = edge(grayImg, 'Canny'); figure; imshow(edges); title('Edge Detection Result'); ``` #### 利用形态学运算提取特征 采用膨胀腐蚀等形态学变换突出连贯直线结构,并去除噪声干扰项,从而更好地定位可能存在的条形码位置。 ```matlab se = strel('line', 30, 90); % 创建线状结构元素用于匹配竖直方向上的条纹 dilatedEdges = imdilate(edges, se); erodedImage = imerode(dilatedEdges, se); figure; imshow(erodedImage); title('Morphological Operations Applied'); ``` #### 解析条形码数据 最后借助第三方库(如ZBar、ZXing)或调用专门设计好的解码API接口完成实际编码到字符序列之间的映射工作。需要注意的是,在某些情况下可以直接使用MathWorks官方提供的Barcode Recognition Toolbox来进行更高效的开发。 ```matlab % 假设已经安装了支持包或者有访问外部服务的能力 decodedData = decodeBarcode(erodedImage); disp(['Decoded barcode data:', decodedData]); ``` 以上展示了基于MATLAB平台下的一种简单条形码检测流程框架。具体应用时还需要考虑更多细节优化以及针对不同类型的条形码调整参数设置等问题。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值