文章目录 【基础】傅里叶变换 0.1、傅里叶变换的复数结果(空间域 -> 频率域) 0.2、幅度与相位(幅度图像 + 相位图像) 0.3、幅度图像与频谱图像的区别 0.4、什么是频谱图像??? 0.4.1、应用领域 0.4.2、频谱图像显示:水平+竖直 0.4.3、频谱图像处理:水平+竖直(实测) 一、基于FFT的去条纹算法 —— 用于去除图像中的周期性条纹噪声 1.1、基本介绍(Destripe) 1.2、条纹噪声 1.2.1、噪声类型(竖条纹 + 横条纹) 1.2.2、产生原因 1.2.3、影响 1.2.4、需求 1.3、处理步骤 (1)读取图像 (2)前处理(可选) —— 决定了图像质量 (3)傅里叶变换:cv2.dft() + np.fft.fftshift() (4)频域滤波(过滤频率分量) —— mask决定了图像质量(核心) (5)逆傅里叶变换:np.fft.ifftshift() + cv2.idft() (6)后处理(可选) —— 决定了图像质量 二、项目实战 2.0、使用说明 2.1、在自然图像背景下(2D图像) 方法一(代码复现) —— 基于FFT的去条纹算法(性能最优) 方法二(代码复现) —— 基于带通滤波器的去条纹算法 —— (比较模糊) 方法三(代码复现) —— 基于引导滤波器的去条纹算法 —— (效果减半) 2.2、在荧光图像背景下(类器官、脑图像等) 2.2.2、【 Fiji 复现】 —— 基于FFT的去条纹算法(性能最优) 2.2.3、【代码复现】 —— 基于FFT的去条纹算法(性能最优) 三、基于FFT的去条纹算法(参数测试) 3.0、使用说明 3.1、频率滤波 —— 参数:线条类型 + 是否去除中心点 + 中心点半径 + 线宽 3.1.1、mask去除线条:水平 or 竖直 or 水平+竖直(保留中心点) —— 参数 - 中心点半径 3.1.2、mask去除线条:中心水平 + 中心竖直(保留中心点) —— 参数 - 线宽 3.1.3、mask去除线条:中心水平 + 中心竖直(保留中心点) —— 参数 - 裁剪中心区域的周边区域,取其像素线条替换黑色线条 3.1.4、mask去除线条:水平 or 竖直 or 水平+竖直 —— 参数 - 去除中心点 3.2、图像前处理:高斯滤波 + 频域滤波 3.2.1、mask去除线条:水平 or 竖直 or 水平+竖直 —— 参数 - 是否去除中心点 3.2.2、mask去除线条:中心水平(去除中心点) —— 参数 - 线宽 3.2.3、mask去除线条:中心水平(去除中心点) —— 参数 - sigma 3.3、图像后处理 3.3.1、灰度阈值分割 3.3.2、连通区域分割 【基础】傅里叶变换 【直观详解】让你永远忘不了的傅里叶变换解析 傅里叶变换(Fourier Transform,FT):是一种数学工具,用于将一个信号(图像)分解为多个正弦波(不同的频率成分),以帮助分析图像的频率特征(强度和位置)。 核心思想&#