短小精悍算例:Python实现PCA(主成分分析)降维

PCA(principal components analysis)即主成分分析技术,意在利用降维的思想,把多个指标转化为少数几个综合指标。下面用Python实现:

from sklearn.decomposition import PCA
from sklearn import datasets

## 加载数据
iris = datasets.load_iris()
X = iris.data
y = iris.target

## 降维操作,4维降维成2维
pca = PCA(n_components=2)
pca.fit(X)
Xr = pca.transform(X)

## 降维前后,前10个样本的对比
print("降维之前(4维):\n", X[0:10], '\n')
print("降维之前(2维):\n", Xr[0:10], '\n')

降维前后的对比:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值