又开一坑,最近准备介绍 CLIP多模态大模型 相关的后续优化,首先我们可以聊一下在 Prompt Engineering(提示工程)上, 后面的作者都做了什么工作,因为 提示工程 是我们最容易实现&资源最友好的工作了。
下面会有如下几篇博文进行 Prompt Engineering 方面的工作的阐述:
【1】 CoOp - CLIP 自适应 Prompt 工程 [本文]
【2】CoCoOp - CLIP 自适应 Prompt 工程
一. 综述
由于大模型的推陈出新,大模型的资源消耗让很多人对于模型的重新训练 & 微调 难以实现。因此仅利用提示词,在没有或者极少量的数据下引导 模型对于我们业务下有更好的效果 的工程方式,简称 Prompt-Engineering。 被学术 & 工业界 大量应用。 但是由于 Prompt 词需要大量的人工来进行 微调和使用,该 分享 向大家介绍一个 基于 多模态模型 - Coop 自适应学习Prompt词汇,来做到符合业务预期, 带来更好效果的工作。
二. 背景
我们都知道,对于大模型来说。 Prompt Engineering [特征工程] 成为一个越来越重要的方向和工作, 在包括GPT【生成式大模型】以及 CLIP