- 博客(36)
- 收藏
- 关注
原创 基于Win在VSCode部署运行OpenVINO模型
在VSCode里( Ctrl+Shift+P 打开命令面板),指定Python解释器为上面安装路径。写一个python脚本运行测试。
2025-05-13 19:54:35
477
原创 Visual Studio下安装引入Boost库
在 Win 上通过 Visual Studio 运行 c++ 代码,引入头文件 #include ,显式无法打开,需要手动下载boost并进行配置。下载boost,解压。
2024-07-08 11:17:07
1628
原创 Multimodality Helps Unimodality:Cross-Modal Few-Shot Learning with Multimodal Models
Multimodality Helps Unimodality:Cross-Modal Few-Shot Learning with Multimodal Models
2024-02-21 18:04:36
473
原创 DeFo: Learning to Decompose Visual Features with Latent Textual Prompts
论文信息:arxiv:Motivation像 CLIP 这样的预训练视觉语言模型的在学习可迁移视觉表征方面的巨大潜力。但对于下游任务,CLIP 模型在通过进行推理时,会出现以下问题:1、在基于检索的推理过程中,如果文本描述不准确,准确性和鲁棒性会下降(对文本描述敏感):这种敏感性可以通过修改类名来观察,比如对于 CIFAR-10 上的 zero-shot 推理,当使用原始类名时,CLIP 获得了 63.7% 的准确率。
2023-09-14 23:43:54
320
原创 Mutual Prompt Leaning for Vision Language Models
V-L预训练模型包括文本和视觉两个子分支,现有的提示学习方法主要分为提示学习和提示学习。最近的文本提示学习方法通过设计包含文本和图像领域知识的,取得了良好的性能。然而,由于语义融合的粒度不同,在每个文本提示token中不加区别地添加全局图像信息会导致。鉴于此,我们提出了一种fine-grained text prompt (FTP),它将图像的整体信息分解成更细粒度的语义,并将它们合并到相应的tokens中。另一方面,目前的视觉提示学习往往是基于随机初始化或基于图像条件的,忽略了文本的语义信息。我们。
2023-08-17 16:12:17
77
原创 Patch-Mix Transformer for Unsupervised Domain Adaptation: A GamePerspective
Patch-Mix Transformer for Unsupervised Domain Adaptation: A GamePerspective
2023-06-29 23:41:42
561
原创 Task-Oriented Multi-Modal Mutual Leaning for Vision-Language Models
Task-Oriented Multi-Modal Mutual Leaning for Vision-Language Models
2023-05-21 21:27:33
343
2
原创 CoCoOp: Conditional Prompt Learning for Vision-Language Models
Conditional Prompt Learning for Vision-Language Models
2023-05-18 22:22:17
3181
4
原创 CoOp: Learning to Prompt for Vision-Language Models
Learning to Prompt for Vision-Language Models
2023-05-08 21:40:37
392
原创 Edit Everything: A Text-Guided Generative Systemfor Images Editing
中文风格的Edit Everything
2023-04-30 00:22:57
519
原创 Prompt Vision Transformer for Domain Generalization
Prompt Vision Transformer for Domain Generalization
2023-04-04 19:52:13
393
原创 Multi-Prompt Alignment for Multi-source Unsupervised Domain Adaptation
Multi-Prompt Alignment for Multi-source Unsupervised Domain Adaptation
2023-04-04 19:26:55
632
原创 Decorate the Newcomers: Visual Domain Prompt for Continual Test Time Adaptation
Decorate the Newcomers: Visual Domain Prompt for Continual Test Time Adaptation
2023-03-28 16:40:00
875
1
原创 PADA: Example-based Prompt Learning for on-the-fly Adaptation to Unseen Domains
PADA: Example-based Prompt Learning for on-the-fly Adaptation to Unseen Domains
2023-03-25 19:12:08
290
原创 Domain Prompt Learning for Efficiently Adapting CLIP to Unseen Domains
Domain Prompt Learning for Efficiently Adapting CLIP to Unseen Domains
2023-03-12 23:38:27
1022
原创 Prompt Learning
关于Prompt learning的理解,主要依托于:Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing
2023-03-12 22:22:08
504
原创 Domain Adaptation via Prompt Learning
Domain Adaptation via Prompt Learning
2023-03-06 21:24:12
745
原创 TVT_Transferable Vision Transformer for Unsupervised Domain Adaptation
TVT的PPT
2023-02-15 13:44:04
609
原创 Cross ViT
CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification
2023-02-06 23:51:08
1669
原创 numpy中关于zeros的初步认识
首先依然是官方文档对numpy.zeros的介绍:返回一个给定格式的用0填充的数组。numpy.zeros — NumPy v1.22 Manual具体格式为:numpy.zeros(shape, dtype=float, order='C')shape 形状。dtype 数据类型,默认是numpy.float64,可更改为其他数据类型。order 默认是C,可理解为二维矩阵的行优先;如果改为F可简单理解为列优先。...
2022-05-28 10:43:28
142
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人