一、基本原理
核密度估计(Kernel Density Estmation,KDE)认为在一定的空间范围内,某种事件可以在任何位置发生,但是在不同的地理位置上发生的概率是不一样的,如果在某一区域内其事件发生的次数较多则认为此区域内此事件发生的频率高,反之则低。另外根据地理学第一定律,即:距离越近的事物关联越密切,与核心要素越近的位置获取的密度扩张值越大。我们可以把每一个发生的事件看做成一个核心要素,那么在事件发生次数较多的区域,核心要素间的关联性就越强。而核密度估计通过一个函数反映了这一思想。运用相关软件通过此函数以图像的形式展现出来。
核密度估计函数式
其中k为核的权重函数,h为带宽,即以x为原点的曲面在空间上延展的宽度,h的取值会影响到图形的光滑程度;x-xi是密度估值点x到xi之间的距离。
函数计算示意图
在实际生活中,核密度估计可以根据某一地区犯罪的集中发生地来预测犯罪率密度较高的地区范围,还可以运用野外调查后所得的某一珍稀物种的地理位置来预测其种群密度较高的地域范围。二、Arcgis软件支持下的核密度估计
这里我们以某一珍惜物种的地理分布位置为例,来进行核密度分析。
1.数据准备与处理:边界范围矢量数据(如图1)、珍稀物种点数据(如图2)。将准备好的数据加载到Arcmap中。加载到软件中,之后我们需要对数据进行“投影”,例子中选择的投影是“WGS_1984_Web_Mercator_Auxiliary_Sphere”(注意:边界范围数据与经纬度点数据的投影要保持一致!)。投影结束后我们要点击左上角“视图”选项