vgg16卷积层的计算量_卷积神经网络VGG16详解

本文详细介绍了VGG16网络的结构,包括卷积层、池化层、填充操作、全连接层以及dropout的作用。通过实例展示了如何使用Keras框架搭建VGG16模型,并探讨了不同层对图像数据的影响。
摘要由CSDN通过智能技术生成

VGG网络图如下,本文要深入讲解的是很常用的VGG16网络。在看懂VGG16网络之前,先补一下卷积神经网络的知识,然后用代码实例来更好说明VGG16网络

VGG网络

图片数据如何输入?

彩色图像有RGB三个颜色通道,分别是红、绿、蓝三个通道,这三个通道的像素可以用二维数组来表示,其中像素值由0到255的数字来表示。比如一张160x60的彩色图片,可以用160*60*3的数组表示。

什么是卷积?

卷积过程是使用一个卷积核(如图中的Filter),在每层像素矩阵上不断按步长扫描下去,每次扫到的数值会和卷积核中对应位置的数进行相乘,然后相加求和,得到的值将会生成一个新的矩阵。卷积核相当于卷积操作中的一个过滤器,用于提取我们图像的特征,特征提取完后会得到一个特征图。卷积核的大小一般选择3x3和5x5,比较常用的是3x3,训练效果会更好。卷积核里面的每个值就是我们需要训练模型过程中的神经元参数(权重),开始会有随机的初始值,当训练网络时,网络会通过后向传播不断更新这些参数值,知道寻找到最佳的参数值。对于如何判断参数值的最佳,则是通过loss损失函数来评估。

卷积过程

什么是padding?

在进行卷积操作的过程中,处于中间位置的数值容易被进行多次的提取,但是边界数值的特征提取次数相对较少,为了能更好的把边界数值也利用上,所以给原始数据矩阵的四周都补上一层0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>