四. 极坐标曲线
Geogebra有提供专门的极坐标曲线指令。
首先,右键绘图区,将【网格】的【网格类型】,改为【极坐标网格】(默认是主要和次要网格):
(1)用极坐标方式绘制点
基本语法:
(ρ; θ)
其中,
为极径,
为极角。注意中间是分号,区分直角坐标下的点:是用逗号。
例如,输入 (4; pi/3)
(2) 绘制极坐标曲线
基本语法:
曲线((ρ(θ);θ), θ, α, β)
其中,(ρ(θ); θ) 表示曲线任一极坐标表示的点(通项),后面是参数 θ 及其范围:
(3) 若干极坐标曲线的例子
① 四叶玫瑰线
曲线((a sin(2θ); θ), θ, 0, 2π)
曲线((a cos(2θ); θ), θ, 0, 2π)
② 三叶玫瑰线
曲线((a sin(3θ); θ), θ, 0, 2π)
曲线((a cos(3θ); θ), θ, 0, 2π)
③ 双纽线
曲线((a sqrt(sin(2θ)); θ), θ, 0, 2π)
④ 不知道叫什么曲线
曲线((0.8 (1 + 3cos(3θ) + 3sin(3θ)²); θ), θ, 0, 2π)
注:绘制完曲线,对曲线做了填充。
⑤ 蝴蝶曲线
曲线((ℯ^cos(θ) - 2cos(4θ) + sin(θ / 12)⁵; θ), θ, 0, 50π)
注:蝴蝶曲线画了
。
主要参考文献
- 唐大仕,动态几何画板Geogebra教学应用, 慕课网
- 极坐标曲线,徐小湛博客,高等数学图形与动画:目录 - calculus的日志 - 网易博客
- 高等数学,同济6版