检测概率和虚警概率_目标检测入门

本文介绍了目标检测的任务概述,从分类到检测的转变,核心问题在于候选区域的生成和标注。讲解了检测算法如Faster-RCNN和YOLOv3,以及边界框、真实框和预测框的概念。重点讨论了目标检测的评估指标,包括Precision、Recall、mAP和NMS,并阐述了它们在判断检测器性能中的作用。
摘要由CSDN通过智能技术生成

1. 目标检测-任务概述

分类 VS 检测

  • 分类问题:所属类别
  • 检测问题:所属类别 + 物体位置

1.1 从分类到检测算法

为图片中的某个像素点,
为其他位置,由
可构成一个矩形框。

穷举图片中所有可能的矩形框

,每个子区域当成一张图片来做分类。

3b9c5f00310b563424a5989120d9dd7b.png

候选区域:每个

所代表的矩形框,也被称为感兴趣区域(Region of Interest,
ROI)。

1.2 目标检测的核心问题

  • 如何产生候选区域,并对它们进行标注;
  • 如何提取图像特征,并将提取到的特征与候选区域的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值