离散分布的分布函数_常见概率统计分布及Python实现

本文介绍了离散随机变量与连续随机变量的概念,包括概率质量函数(PMF)、概率密度函数(PDF)和累积分布函数(CDF)。详细讲解了伯努利、二项、几何、泊松和正态分布,并探讨了这些分布之间的关系。此外,还提供了各种分布的Python实现,帮助理解其实际应用。
摘要由CSDN通过智能技术生成

87591369d9565171d16c6641fd2559b1.png

一、离散随机变量及连续随机变量

随机变量

1. 离散随机变量(Discrete random variable):取值是可数个值(且只能为自然数0、1、2...)的随机变量

2. 连续随机变量(Continuous random variable):取值是一个区间中任一实数(即变量的取值可以是连续的)的随机变量

相应概率计算公式PMF/PDF/CDF

1. 离散随机变量:概率质量函数(Probability Mass Function,PMF)

PMF即离散随机变量在各特定取值上的概率

2. 连续随机变量:概率密度函数(Probability Density Function,PDF)

PDF:连续随机变量的概率密度函数是描述这个随机变量的输出值,在某个特定取值点附近可能性的函数。

3. 累积分布函数(Cumulative Distribution Function,CDF)

CDF:概率密度函数的积分,能完整描述一个随机变量X的概率分布。

概率中的PDF,PMF,CDF - wanzer之家 - CSDN博客​blog.csdn.net

二、离散概率分布及连续概率分布

离散概率分布

  1. 伯努利分布(Bernoulli Distribution):亦称“0-1分布”
  2. 二项分布(Binomial Distribution):即重复n次独立的伯努利实验,每次试验中只有两种可能的结果。
  3. 几何分布(Geometric Distribution):在n次伯努利试验中,试验k次才得到一次成功的概率(即前k-1次均失败)
  4. 泊松分布(Poisson Distribution):一种累计随机事件发生次数的最基本的独立增量过程。

泊松分布一般需满足三个条件:事件的发生是小概率事件/事件间相互独立/事件发生的概率是稳定的

连续概率分布

正态分布(No

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值