一、离散随机变量及连续随机变量
随机变量
1. 离散随机变量(Discrete random variable):取值是可数个值(且只能为自然数0、1、2...)的随机变量
2. 连续随机变量(Continuous random variable):取值是一个区间中任一实数(即变量的取值可以是连续的)的随机变量
相应概率计算公式PMF/PDF/CDF
1. 离散随机变量:概率质量函数(Probability Mass Function,PMF)
PMF即离散随机变量在各特定取值上的概率
2. 连续随机变量:概率密度函数(Probability Density Function,PDF)
PDF:连续随机变量的概率密度函数是描述这个随机变量的输出值,在某个特定取值点附近可能性的函数。
3. 累积分布函数(Cumulative Distribution Function,CDF)
CDF:概率密度函数的积分,能完整描述一个随机变量X的概率分布。
概率中的PDF,PMF,CDF - wanzer之家 - CSDN博客blog.csdn.net二、离散概率分布及连续概率分布
离散概率分布
- 伯努利分布(Bernoulli Distribution):亦称“0-1分布”
- 二项分布(Binomial Distribution):即重复n次独立的伯努利实验,每次试验中只有两种可能的结果。
- 几何分布(Geometric Distribution):在n次伯努利试验中,试验k次才得到一次成功的概率(即前k-1次均失败)
- 泊松分布(Poisson Distribution):一种累计随机事件发生次数的最基本的独立增量过程。
泊松分布一般需满足三个条件:事件的发生是小概率事件/事件间相互独立/事件发生的概率是稳定的
连续概率分布
正态分布(No