这是关于量子 PCP 猜想[1]的系列文章的第二篇, 这一篇会用到一点有限群表示论.
在上一篇中, 我们介绍了上世纪八十年代中期以来, 关于刻画交互式证明系统的计算能力的一系列结果, 我们发现交互式证明的计算能力比我们想象中要强大的多, 甚至可以导出 PCP 定理这样的惊人结果 — 只需要在"证明"中看上几眼, 就能以极高的概率判断"证明"是否正确. 而关于量子交互式证明系统, 十年前我们知道了
不过我们并没有给出刻画
- 一是从 entangled games 的视角介绍量子策略和获胜概率, 以及量子策略带来的关于获胜概率的优势的来源.
- 二是从证明者们共享的纠缠态的视角介绍量子态的自检测 (self-testing), 即如果玩家们的获胜概率几乎最优的话, 那么他们共享的量子态几乎是极大纠缠态.
有趣的是, 如果从群表示论的观点 (Gowers-Hatami 定理[4]) 来看, 极大纠缠态的自检测实际上关于 Pauli 矩阵非对易性的性质检测 (property testing)! 这一联系也是 games qPCP theorem 证明中的关键技术之一.
本文亦发表于我的博客, 见 量子 PCP 猜想浅说 (二): 量子态自检测和近似群表示. 下面开始正文.
交互式证明和 Entangled Games
下面介绍著名的 CHSH game 和 Magic Square game, 前者就是 Bell 不等式在 entangled games 下的版本.
CHSH game 和"量子优越性"
CHSH game 上的是这么一件事, 有两个玩家 (证明者) 和一个裁判 (验证者), 裁判分别把问题
自然, 我们想问玩家们的最大获胜概率是多少? 不难验证,
- 如果甲乙之间没有纠缠的话, 那么他们的获胜概率是
(就是瞎猜).
- 但是出人意料的是, 如果甲和乙之间共享 EPR 对
的话, 他们的获胜概率提高到!
于是, 如果玩家们的获胜概率超过某个阈值的话, 我们就可以认为他们之间存在量子纠缠; 如果达到了最大获胜概率的话, 那么他们之间共享的量子纠缠是极大纠缠态 (maximally entangled state). 对于第二种情形, 考虑玩家们使用的量子策略, 不难转化到 Bell 不等式.
把上面关于 CHSH game 的描述形式化一下, 给出两个玩家一个裁判的 entangled game 的定义:
两个玩家一个裁判的 entangled game可以用刻画, 其中
+ 裁判对玩家们的提问,和分别是裁判对玩家甲和乙可能的提问.
+ 玩家们的回答, 其中和分别是玩家甲和玩家乙可能的回答.
+ 可能的提问满足概率分布.
+ 玩家们胜利与否由谓词表示.
对应于上一节的多证明者交互式证明系统, 验证者接受证明者的回答即这里的 entangled game 中玩家取胜. 那么, 对于经典情形, 玩家们的最大获胜概率为
而对于量子情形, 鉴于玩家们之间共享了纠缠态
不过量子策略通常会被写成可观测量的形式. 如果上面的
值得一提的是, 注意到 CHSH game 的谓词
Magic Square game 和完美量子策略
尽管上面的 CHSH game 使用量子纠缠会提高获胜概率, 不过仍然不是总会获胜. 有没有 entangled games 能使得量子情形的获胜概率为
注意到行和列的六条约束中, 不论九个格子如何取值, 总有一个约束不被满足, 那么任何经典策略都至多能做到
不难验证, 所有实线行(列)的三个格子乘积为
如果读者熟悉
注意到 Magic Square game 实际上给出了一系列的线性约束 (加法形式) 以及关于可对易性的要求, 而算子解考虑的则是乘积形式的约束. 玩家甲处理的是线性约束, 而玩家乙要处理的则是变量, 实际是 Magic Square game 是 linear constraint system game 的例子之一. 此外, 量子力学中关于角动量的一个常用数学事实是, 可以用指数映射对应李代数
量子最优策略的群表示论解释
在 entangled game 中, 玩家们用共享的纠缠态来测量量子策略对应的可观测量, 所以玩家对裁判的提问的回应跟对应的投影算符的特征值相对应, 因而上面的算子解关于行(列)的约束都是乘积形式. 那么我们所说的算子解究竟是什么呢?
- 一方面, 算子解需要保证对应行(列)的线性约束总是被满足.
- 另一方面, 算子解需要保证玩家们共享的纠缠态是算子解的共同本征态, 即算子解行(列)内部的对易关系.
在 Magic Square game 中, 后者的对易关系被 Pauli 矩阵的张量积满足, 即描述 Pauli 矩阵的反对易关系
如果把
因而, 我们所说的 Magic Square game 的算子解, 就是上述 solution group 的在 Hilbert 空间上的非平凡群表示. 群表示
自检测: 量子态的量子证明
如果有人声称他手上的若干台终端构成了量子网络的话, 我们应该怎么验证他说的是不是真的呢?
比如说下述遛狗场景, 我们觉得他们 (狗) 之间共享"纠缠", 但是显然我们并不能学着汪汪汪一番问出来答案 -- 我们只能用遛狗的绳子 (leash) 来设法测试他们之间是否真的共享"纠缠", 其实这和自检测 (self-testing) 的思路很像, 我们只用和狗之间的特定类型的通信 (绳子), 来确认他们是否满足某些性质.
本节考虑这一问题的简化版本, 如果我们需要检测两台终端, 并且我们被告知终端之间共享了多个 EPR 对 (极大纠缠态), 我们怎么判断这是不是几乎是真的呢? 我们只能接触这两台终端 (自检测的"自"), 并不能使用其他 (已验证的) 量子设备, 就像我们只能用绳子来遛狗一样.
什么是自检测 (self-testing)
回忆一下上一节的 CHSH game, 当玩家甲和乙之间共享 EPR 对的时候, 我们可以选择合适的量子策略达到最优获胜概率. 那么如果玩家甲乙之间共享的量子态不是 EPR 对呢? 如果是乘积态的话, 那显然和经典情形一样. 如果是其他纠缠态的话, 那应该多少还有一点"量子优势". 如果是跟 EPR 对很接近的量子态呢? 那应该最优获胜概率也很接近吧, 这么看起来玩家们之间共享的极大纠缠态在 local unitary 下是唯一的 -- 最后这个猜测是对的, 上一段给出的问题称为自检测 (self-testing), 我们可以设计一套检测流程 (protocol), 使得只有两台终端之间共享的纠缠态非常接近极大纠缠态 (在 local unitary 下) 的时候, 才能通过测试.
这里通过测试的概率
下面以 EPR 对和 CHSH game 为例[8]说明. 我们知道 CHSH game 的最优量子策略是
如果要验证两对 EPR 对呢? 我们也可以证明 Magic Square game 就是对应的自检测流程[9]. 如果是要验证三对 EPR 对呢? 我们仍然可以设计一个类似的 entangled game, 不过这次是在五角星上[10], 共有五条约束四个变量 (其中一条乘积为
自检测与近似群表示
上一段我们介绍了自检测 (self-testing), 但是如何证明某一 entangled game 是极大纠缠态的自检测 (self-test) 协议呢? 上一节提及了一个重要事实,对于 linear constraint system games, 最优量子策略是描述线性约束的 solution group 的非平凡表示[10]. 那么如果要考虑接近最优的量子策略呢? 我们需要一个和最优策略很接近的"群表示", "很接近"意味着我们可以对这个近似的"群表示"进行"取整"得到真正的群表示. 比如说 solution group 其中一个关系是
Gowers-Hatami 在 2015 年证明了下述定理[4], 即这样的"取整"操作对任意有限群均存在:
考虑有限群和 Hilbert 空间上的量子态, 假定是一个关于的-近似表示, 即. 那么存在一个等距 (isometry) 变换和精确表示使得.
比如单量子比特的 Pauli 矩阵构成的群 (即 Weyl-Heisenberg 群)
事实上, 我们还可以用上面的例子进一步证明 CHSH game 是 EPR 对的自检测 (完整推导见[2]). 注意到
上式用到了
另外, 如果读者熟悉稳定化子编码 (stabilizer code) 的话, 考虑
自检测与 entangled game
上一段说道, CHSH game 是
上述计算中最后一步是 Cauchy-Swartz 不等式, 由其取等条件, 我们可以得到
其中
更一般地, 我们可以对任意
- 完备性 (completeness): 如果两个玩家共享极大纠缠态的话, 那么他们可以找到一个量子策略达到最优获胜概率, 并且第二个玩家的量子策略对应的可观测量满足性质 (问题
要求类似):
- 问题
对应的可观测量是, 即相当于在第一对 EPR 对上玩家甲用测量,
- 问题
和回答对应的量子策略是的特征空间上的投影算符.
- 问题
- 可靠性 (soundness): 如果两个玩家共享某个量子态
, 使得他们的获胜概率非常接近最优获胜概率, 那么
- 量子策略的可观测量
和是和的近似表示.
- 通过在他们共享量子态
上的局部操作, 我们可以使得和非常接近.
- 量子策略的可观测量
这里的玩家甲和乙也可以看做证明者, 那么如果他们使用的策略如可靠性定义中所描述的话, 他们是诚实的 (honest). 由于上述 anti-commutation game 和极大纠缠态的自检测协议等价, 在上一段中我们证明了 CHSH game 是
Anti-commutation game 给出了 Weyl-Heisenberg 群中的反对易关系的性质检测 (property testing) 方法, 这在后文中给出
在下一篇文章中, 我们介绍如何用线性检测 (linearity test) 来证明指数规模的经典 PCP 定理, 即给出
Reference
[1] Aharonov, Dorit, Itai Arad, and Thomas Vidick. "Guest column: the quantum PCP conjecture."Acm sigact news44.2 (2013): 47-79.
[2] https://cseweb.ucsd.edu/~slovett/workshops/quantum-computation-2018/material.html
[3] Natarajan, Anand, and Thomas Vidick. "A quantum linearity test for robustly verifying entanglement." InProceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 1003-1015. ACM, 2017.
[4] Gowers, William Timothy, and Omid Hatami. "Inverse and stability theorems for approximate representations of finite groups."Sbornik: Mathematics208, no. 12 (2017): 1784.
[5] Cleve, Richard, Peter Hoyer, Benjamin Toner, and John Watrous. "Consequences and limits of nonlocal strategies." InComputational Complexity, 2004. Proceedings. 19th IEEE Annual Conference on, pp. 236-249. IEEE, 2004.
[6] https://uwaterloo.ca/institute-for-quantum-computing/sites/ca.institute-for-quantum-computing/files/uploads/files/lecture-1_0.pdf
[7] Brassard, Gilles, Anne Broadbent, and Alain Tapp. "Quantum pseudo-telepathy."Foundations of Physics35, no. 11 (2005): 1877-1907.
[8] McKague, Matthew, Tzyh Haur Yang, and Valerio Scarani. "Robust self-testing of the singlet."Journal of Physics A: Mathematical and Theoretical45, no. 45 (2012): 455304.
[9] Wu, Xingyao, Jean-Daniel Bancal, Matthew McKague, and Valerio Scarani. "Device-independent parallel self-testing of two singlets."Physical Review A93, no. 6 (2016): 062121.
[10] Coladangelo, Andrea, and Jalex Stark. "Robust self-testing for linear constraint system games."arXiv preprint arXiv:1709.09267(2017).
[11] Quantum mechanics: The usefulness of uselessness