群同态基本定理证明_抽象代数3-3群同态基本定理及应用

本文深入探讨了群同态的基本定理,包括群同态的核和像,介绍了群同态基本定理、同构基本定理和子群对应定理,并通过推论展示了它们在群结构分析中的应用,如群的同态像与商群的关系,以及循环群的性质。同时,讨论了内自同构群及其与群中心的关系。
摘要由CSDN通过智能技术生成

fc289cb864a31456ab1e7475fe665577.png

通过商群以及群同态基本定理来研究群结构是群论里的一个重要方法。这里介绍群同态基本定理、同构基本定理、子群对应定理。主要是Noether,Jordan,Ruffini等人的结果。


一、群同态基本定理

首先介绍群同态的核和像的概念:

定义1 设φ是群G到群G̅的群同态,G̅的单位元在φ下的所有原象作成的集合,称为φ的核,记为Kerφ。 群G的所有元素在φ下的像作成的集合,称为φ的像集,记作Imφ , 或φ(G).

a4b9f52122b82290255173b7a041e4de.png
Kerφ为单位元的原象

很容易验证:Kerφ是G的正规子群,Imφ是G̅的子群。

证:因为之前已经知道群的同态保持子结构,所以,Imφ是G̅的子群。满的群同态保持正规子群的结构。特别的,φ是G到Imφ的满同态,所以将平凡的正规子群{e̅}拉回到正规子群Kerφ。

群和商群之间存在一个自然的满同态,称为自然同态。设N是G的正规子群。

自然同态:

,Ker τ=N.

有了自然同态之后,很容易得到下面的群同态基本定理。

定理2(群同态基本定理) 设φ是群G到群G̅的一个满同态. 则 N=Kerφ⊴G, 且 G⁄N≅G̅。

若φ只是一个同态,

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值