同态基本定理

同态基本定理

f : G → G ′ f:G\to G' f:GG 是群的同态.则 I m f = f ( G ) {\rm Im}f=f(G) Imf=f(G) G ′ G' G 的子群, K e r f = { f − 1 ( 1 ) = g ∈ G ∣ f ( g ) = 1 } {\rm Ker}f=\{f^{-1}(1)={g\in G|f(g)=1}\} Kerf={f1(1)=gGf(g)=1} G G G 的正规子群. 并且有群同构

f ˉ : G / k e r f ≅ I m f , f ˉ ( g ˉ ) = f ( g ) \bar{f}:G/{\rm ker}f\cong {\rm Im}f,\qquad\bar{f}(\bar{g})=f(g) fˉ:G/kerfImf,fˉ(gˉ)=f(g)

I m f {\rm Im}f Imf K e r f {\rm Ker}f Kerf 分别叫做同态 f f f 的像和核

证明: 先证 I m f {\rm Im}f Imf G ′ G' G 的子群.

∀ a ′ , b ′ ∈ I m f , ∃ a , b , s . t . f ( a ) = a ′ , f ( b ) = b ′ \forall a',b'\in{\rm Im}f,\exist a,b,\qquad s.t.f(a)=a',f(b)=b' a,bImf,a,b,s.t.f(a)=a,f(b)=b

  • 1 G ′ = f ( 1 G ) ∈ I m f 1_{G'}=f(1_G)\in {\rm Im}f 1G=f(1G)Imf
  • ( a ′ ) − 1 = f ( a ) − 1 = f ( a − 1 ) ∈ I m f (a')^{-1}=f(a)^{-1}=f(a^{-1})\in{\rm Im}f (a)1=f(a)1=f(a1)Imf
  • a ′ b ′ = f ( a ) f ( b ) = f ( a b ) ∈ I m f a'b'=f(a)f(b)=f(ab)\in{\rm Im} f ab=f(a)f(b)=f(ab)Imf

所以 I m f {\rm Im}f Imf G ′ G' G 的子群

再证 K e r f {\rm Ker}f Kerf G G G 的子群

∀ a , b ∈ K e r f , s . t . f ( a ) = f ( b ) = 1 G ′ \forall a,b\in {\rm Ker }f,\qquad s.t.f(a)=f(b)=1_{G'} a,bKerf,s.t.f(a)=f(b)=1G

  1. f ( 1 G ) = 1 G ′ f(1_G)=1_{G'} f(1G)=1G,所以 1 G ∈ K e r f 1_G\in {\rm Ker}f 1GKerf
  2. f ( a − 1 ) = f ( a ) − 1 = 1 G ′ , f(a^{-1})=f(a)^{-1}=1_{G'}, f(a1)=f(a)1=1G,所以 a − 1 ∈ K e r f a^{-1}\in {\rm Ker}f a1Kerf
  3. f ( a b ) = f ( a ) f ( b ) = 1 G ′ f(ab)=f(a)f(b)=1_{G'} f(ab)=f(a)f(b)=1G,所以 a b ∈ K e r f ab\in {\rm Ker}f abKerf

所以 K e r f {\rm Ker}f Kerf G G G 的子群

再证 K e r f {\rm Ker}f Kerf G G G 的正规子群

g ∈ G , a ∈ K e r f g\in G,a\in{\rm Ker} f gG,aKerf

考虑如下等式关系:

f ( g a g − 1 ) = f ( g ) f ( a ) f ( g − 1 ) = f ( g ) 1 G ′ f ( g ) − 1 = 1 G ′ f(gag^{-1})=f(g)f(a)f(g^{-1})=f(g)1_{G'}f(g)^{-1}=1_{G'} f(gag1)=f(g)f(a)f(g1)=f(g)1Gf(g)1=1G

所以 g a g − 1 ∈ K e r f gag^{-1}\in{\rm Ker}f gag1Kerf,从而 g   K e r f   g − 1 ⊆ K e r f g\ {\rm Ker}f\ g^{-1}\subseteq{\rm Ker}f g Kerf g1Kerf,从而 K e r f ⊆ g − 1   K e r f   g {\rm Ker}f\subseteq g^{-1}\ {\rm Ker}f\ g Kerfg1 Kerf g ,从而 K e r f ⊆ g   K e r   g − 1 {\rm Ker}f\subseteq g\ {\rm Ker}\ g^{-1} Kerfg Ker g1 ,从而

K e r f = g   K e r f   g − 1 {\rm Ker}f=g\ {\rm Ker}f\ g^{-1} Kerf=g Kerf g1

所以 K e r f {\rm Ker}f Kerf G G G 的正规子群

再证明映射 f ˉ \bar{f} fˉ 的可定义性

即与 g ˉ = g ( K e r f ) \bar{g}=g({\rm Ker}f) gˉ=g(Kerf) 中代表元选取无关. 因若 g ′ ∈ g ( K e r f ) g'\in g({\rm Ker}f) gg(Kerf) , 则 g ′ = g k , k ∈ K e r f g'=gk,k\in{\rm Ker}f g=gk,kKerf, 于是 f ˉ ( g ˉ ′ ) = f ( g ′ ) = f ( g k ) = f ( g ) f ( k ) = f ( g ) = f ˉ ( g ˉ ) \bar{f}(\bar{g}')=f(g')=f(gk)=f(g)f(k)=f(g)=\bar{f}(\bar{g}) fˉ(gˉ)=f(g)=f(gk)=f(g)f(k)=f(g)=fˉ(gˉ). 其次,易证 f ˉ \bar{f} fˉ 为群的同态:

f ˉ ( g ˉ ⋅ g ′ ˉ ) = f ˉ ( g g ′ ˉ ) = f ( g g ′ ) = f ( g ) ⋅ f ( g ′ ) = f ˉ ( g ˉ ) ⋅ f ˉ ( g ′ ˉ ) \bar{f}(\bar{g}\cdot\bar{g'})=\bar{f}(\bar{gg'})=f(gg')=f(g)\cdot f(g')=\bar{f}(\bar{g})\cdot\bar{f}(\bar{g'}) fˉ(gˉgˉ)=fˉ(ggˉ)=f(gg)=f(g)f(g)=fˉ(gˉ)fˉ(gˉ)

再证 f ˉ \bar{f} fˉ 是满同态:

对每个 a ′ ∈ I m f a'\in{\rm Im}f aImf,有 a ∈ G a\in G aG 使得 f ( a ) = a ′ f(a)=a' f(a)=a. 于是 f ˉ ( a ˉ ) = f ( a ) = a ′ \bar{f}(\bar{a})=f(a)=a' fˉ(aˉ)=f(a)=a

最后证 f ˉ \bar{f} fˉ 是单同态:

a ˉ , b ˉ ∈ G / K e r f , ( a , b ∈ G ) \bar{a},\bar{b}\in G/{\rm Ker}f,(a,b\in G) aˉ,bˉG/Kerf,(a,bG)并且 f ˉ ( a ˉ ) = f ˉ ( b ˉ ) \bar{f}(\bar{a})=\bar{f}(\bar{b}) fˉ(aˉ)=fˉ(bˉ), 则 f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b). 于是 f ( a − 1 b ) = f ( a ) − 1 f ( b ) = 1 f(a^{-1}b)=f(a)^{-1}f(b)=1 f(a1b)=f(a)1f(b)=1.从而 a − 1 b ∈ K e r f a^{-1}b\in {\rm Ker}f a1bKerf. 于是 a ( K e r f ) = b ( K e r f ) . a({\rm Ker}f)=b({\rm Ker}f). a(Kerf)=b(Kerf). a ˉ = b ˉ \bar{a}=\bar{b} aˉ=bˉ

注:

定理中给出的 f ˉ \bar{f} fˉ 叫做正则同构. 如果将 f f f 看成 G / K e r f → G ′ G/{\rm Ker}f\to G' G/KerfG. 则这是单同态,叫做正则(单同态).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值