同态基本定理
设 f : G → G ′ f:G\to G' f:G→G′ 是群的同态.则 I m f = f ( G ) {\rm Im}f=f(G) Imf=f(G) 是 G ′ G' G′ 的子群, K e r f = { f − 1 ( 1 ) = g ∈ G ∣ f ( g ) = 1 } {\rm Ker}f=\{f^{-1}(1)={g\in G|f(g)=1}\} Kerf={f−1(1)=g∈G∣f(g)=1} 是 G G G 的正规子群. 并且有群同构
f ˉ : G / k e r f ≅ I m f , f ˉ ( g ˉ ) = f ( g ) \bar{f}:G/{\rm ker}f\cong {\rm Im}f,\qquad\bar{f}(\bar{g})=f(g) fˉ:G/kerf≅Imf,fˉ(gˉ)=f(g)
I m f {\rm Im}f Imf 和 K e r f {\rm Ker}f Kerf 分别叫做同态 f f f 的像和核
证明: 先证 I m f {\rm Im}f Imf 为 G ′ G' G′ 的子群.
∀ a ′ , b ′ ∈ I m f , ∃ a , b , s . t . f ( a ) = a ′ , f ( b ) = b ′ \forall a',b'\in{\rm Im}f,\exist a,b,\qquad s.t.f(a)=a',f(b)=b' ∀a′,b′∈Imf,∃a,b,s.t.f(a)=a′,f(b)=b′
- 1 G ′ = f ( 1 G ) ∈ I m f 1_{G'}=f(1_G)\in {\rm Im}f 1G′=f(1G)∈Imf
- ( a ′ ) − 1 = f ( a ) − 1 = f ( a − 1 ) ∈ I m f (a')^{-1}=f(a)^{-1}=f(a^{-1})\in{\rm Im}f (a′)−1=f(a)−1=f(a−1)∈Imf
- a ′ b ′ = f ( a ) f ( b ) = f ( a b ) ∈ I m f a'b'=f(a)f(b)=f(ab)\in{\rm Im} f a′b′=f(a)f(b)=f(ab)∈Imf
所以 I m f {\rm Im}f Imf 是 G ′ G' G′ 的子群
再证 K e r f {\rm Ker}f Kerf 是 G G G 的子群
∀ a , b ∈ K e r f , s . t . f ( a ) = f ( b ) = 1 G ′ \forall a,b\in {\rm Ker }f,\qquad s.t.f(a)=f(b)=1_{G'} ∀a,b∈Kerf,s.t.f(a)=f(b)=1G′
- f ( 1 G ) = 1 G ′ f(1_G)=1_{G'} f(1G)=1G′,所以 1 G ∈ K e r f 1_G\in {\rm Ker}f 1G∈Kerf
- f ( a − 1 ) = f ( a ) − 1 = 1 G ′ , f(a^{-1})=f(a)^{-1}=1_{G'}, f(a−1)=f(a)−1=1G′,所以 a − 1 ∈ K e r f a^{-1}\in {\rm Ker}f a−1∈Kerf
- f ( a b ) = f ( a ) f ( b ) = 1 G ′ f(ab)=f(a)f(b)=1_{G'} f(ab)=f(a)f(b)=1G′,所以 a b ∈ K e r f ab\in {\rm Ker}f ab∈Kerf
所以 K e r f {\rm Ker}f Kerf 是 G G G 的子群
再证 K e r f {\rm Ker}f Kerf 是 G G G 的正规子群
g ∈ G , a ∈ K e r f g\in G,a\in{\rm Ker} f g∈G,a∈Kerf
考虑如下等式关系:
f ( g a g − 1 ) = f ( g ) f ( a ) f ( g − 1 ) = f ( g ) 1 G ′ f ( g ) − 1 = 1 G ′ f(gag^{-1})=f(g)f(a)f(g^{-1})=f(g)1_{G'}f(g)^{-1}=1_{G'} f(gag−1)=f(g)f(a)f(g−1)=f(g)1G′f(g)−1=1G′
所以 g a g − 1 ∈ K e r f gag^{-1}\in{\rm Ker}f gag−1∈Kerf,从而 g K e r f g − 1 ⊆ K e r f g\ {\rm Ker}f\ g^{-1}\subseteq{\rm Ker}f g Kerf g−1⊆Kerf,从而 K e r f ⊆ g − 1 K e r f g {\rm Ker}f\subseteq g^{-1}\ {\rm Ker}f\ g Kerf⊆g−1 Kerf g ,从而 K e r f ⊆ g K e r g − 1 {\rm Ker}f\subseteq g\ {\rm Ker}\ g^{-1} Kerf⊆g Ker g−1 ,从而
K e r f = g K e r f g − 1 {\rm Ker}f=g\ {\rm Ker}f\ g^{-1} Kerf=g Kerf g−1
所以 K e r f {\rm Ker}f Kerf 是 G G G 的正规子群
再证明映射 f ˉ \bar{f} fˉ 的可定义性
即与 g ˉ = g ( K e r f ) \bar{g}=g({\rm Ker}f) gˉ=g(Kerf) 中代表元选取无关. 因若 g ′ ∈ g ( K e r f ) g'\in g({\rm Ker}f) g′∈g(Kerf) , 则 g ′ = g k , k ∈ K e r f g'=gk,k\in{\rm Ker}f g′=gk,k∈Kerf, 于是 f ˉ ( g ˉ ′ ) = f ( g ′ ) = f ( g k ) = f ( g ) f ( k ) = f ( g ) = f ˉ ( g ˉ ) \bar{f}(\bar{g}')=f(g')=f(gk)=f(g)f(k)=f(g)=\bar{f}(\bar{g}) fˉ(gˉ′)=f(g′)=f(gk)=f(g)f(k)=f(g)=fˉ(gˉ). 其次,易证 f ˉ \bar{f} fˉ 为群的同态:
f ˉ ( g ˉ ⋅ g ′ ˉ ) = f ˉ ( g g ′ ˉ ) = f ( g g ′ ) = f ( g ) ⋅ f ( g ′ ) = f ˉ ( g ˉ ) ⋅ f ˉ ( g ′ ˉ ) \bar{f}(\bar{g}\cdot\bar{g'})=\bar{f}(\bar{gg'})=f(gg')=f(g)\cdot f(g')=\bar{f}(\bar{g})\cdot\bar{f}(\bar{g'}) fˉ(gˉ⋅g′ˉ)=fˉ(gg′ˉ)=f(gg′)=f(g)⋅f(g′)=fˉ(gˉ)⋅fˉ(g′ˉ)
再证 f ˉ \bar{f} fˉ 是满同态:
对每个 a ′ ∈ I m f a'\in{\rm Im}f a′∈Imf,有 a ∈ G a\in G a∈G 使得 f ( a ) = a ′ f(a)=a' f(a)=a′. 于是 f ˉ ( a ˉ ) = f ( a ) = a ′ \bar{f}(\bar{a})=f(a)=a' fˉ(aˉ)=f(a)=a′
最后证 f ˉ \bar{f} fˉ 是单同态:
若 a ˉ , b ˉ ∈ G / K e r f , ( a , b ∈ G ) \bar{a},\bar{b}\in G/{\rm Ker}f,(a,b\in G) aˉ,bˉ∈G/Kerf,(a,b∈G)并且 f ˉ ( a ˉ ) = f ˉ ( b ˉ ) \bar{f}(\bar{a})=\bar{f}(\bar{b}) fˉ(aˉ)=fˉ(bˉ), 则 f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b). 于是 f ( a − 1 b ) = f ( a ) − 1 f ( b ) = 1 f(a^{-1}b)=f(a)^{-1}f(b)=1 f(a−1b)=f(a)−1f(b)=1.从而 a − 1 b ∈ K e r f a^{-1}b\in {\rm Ker}f a−1b∈Kerf. 于是 a ( K e r f ) = b ( K e r f ) . a({\rm Ker}f)=b({\rm Ker}f). a(Kerf)=b(Kerf).即 a ˉ = b ˉ \bar{a}=\bar{b} aˉ=bˉ
注:
定理中给出的 f ˉ \bar{f} fˉ 叫做正则同构. 如果将 f f f 看成 G / K e r f → G ′ G/{\rm Ker}f\to G' G/Kerf→G′. 则这是单同态,叫做正则(单同态).