
初中阶段,线段和、差的最值问题是一个难点.求解这类问题,关键的在于找出两个"量":一是定点,二是动点或不定点所在的定直线;进而利用"两点之间线段最短"或三角形的三边关系来解决


别让十年
后的你后
悔现在

思路点拨】
1.图形在平移的过程中,对应点的连线平行且相等,EE′=AA′=m
2.求A′B2+BE′2的最小值,第一感觉是用勾股定理列关于m的式子
3.求A′B+BE′的最小值,第一感觉是典型的“牛喝水”问题——轴对称,两点之间线段最短.

考点伸展】
大世界
用行动
去测量



(1)求直线AC的解析式及B、D两点的坐标;
(2)点P是x轴上的一个动点,过P作直线l//AC交抛物线于点Q.试探究:随着点P的运动,在抛物线上是否存在点Q,使以A、P、Q、C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由;
(3)请在直线AC上找一点M,使△BDM的周长最小,求出点M的坐标
思路点拨】


考点伸展】


奋斗
世界不会
亏待你

】
两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1)
三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2)
两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,PA与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.
垂线段最短】
如图4,正方形ABCD的边长为4,AE平分∠BAC交BC于E.点P在AE上,点Q在AB上,那么△BPQ周长的最小值是多少呢?
如果把这个问题看作“牛喝水”问题,AE是河流,但是点Q不确定啊.
第一步,应用“两点之间,线段最短”.如图5,设点B关于“河流AE”的对称点为F,那么此刻PF+PQ的最小值是线段FQ.
第二步,应用“垂线段最短”.如图6,在点Q运动过程中,FQ的最小值是垂线段FH.
这样,因为点B和河流是确定的,所以点F是确定的,于是垂线段FH也是确定的.

点赞、转发、留言