最近,我的一个同学问了我一道题的最后一问:可能有些不清晰,大家见谅
我一看,这不是很简单嘛,就是我们练习过的马饮水问题,紧接着,我就突然想到了一个问题,就是题目上的:任意三角形边上三点组成的三角形什么时候周长最小?
有兴趣的可以先自己研究研究,我先说结论:这三个点都是这三个点是过所在边所对的点引的垂线的垂足
这个结论的表达方式很简洁,是我考我的一个同学他和我说的,我一开始的表达是这样的:从一个顶点向底边引一条垂线,交点为A,找A关于另两个边的对称点,连接对称点,交另两边于BC,此时ABC周长最小
当然实际上是同一个意思
开始证明
根据我的表达画一个图:
是任意三角形,
,
和
分别是点
关于
的轴对称点,
是
的垂线,所有交点如图所示,需要证明的是
的周长最小
根据轴对称,我们知道
,所以三角形的周长变成了
的长度
还是根据轴对称,我们知道
注意到高线
实际上是所有可能的
中最短的,所以
都是最短的,我们现在只需要证在这两条边最短的时候,
是最短的就好了
这时候用到三角函数,我们前面就做了一个
因为
,
我当时想到这里的时候,我猜测这两个角的角度肯定是一定的,要不然麻烦就大了,事实证明我的猜测是正确的,接着证
我们先忘掉
因为三角形的顶角一定是不变的,所以说小三角形
的两个底角之和肯定是一定的,由于这两个角分别是
的外角,所以
同样是一定的
通过轴对称可以知道,
中这两个角实际上就等于这个三角形的顶角,同样是一定的,所以
就是一定的,因为它们所在三角形是等腰三角形,所以这两个角相等,所以无论何时这两个角一直都是一定的
所以,因为
,当
最小的时候,
即这个三角形的周长是最小的,前面我们已经证明了
的时候
是最小的,所以这个命题得证
即在任意三角形中取三边上的三个点,当这三个点都是这三个点是过所在边所对的点引的垂线的垂足的时候,这三个点组成的三角形周长最小。
最后再加上那一道题最后一问的简单思路
从上面我的证明可以看出,一个三角形内部最小周长三角形的周长是和三角形的底边上的高有关的,所以只要在最后一问的弧上找一个能够构造高最小的三角形的点就好画出来是这样一个图
因为切线,所以是90°,上面的自然就是三角形的高,具体答案就留给各位吧
(觉得学到了就点个赞,和同学分享一下再走吧,实在是太惨淡了)