cml sml区别_如何简单清晰地描述 CAPM 在投资学中的运用,以及 CAL、CML 和 SML 的关系和区别?...

本文详细介绍了CML(资本市场线)和SML(证券市场线)的起源、定义及它们在投资学中的应用。CML描述了有效资产组合与无风险资产的关系,衡量资产组合的有效性;SML则基于CAPM理论,通过beta值判断资产定价是否合理。此外,文章还阐述了Sharpe Index和Jensen’s Index在评估资产效率和定价公平性中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

想深入了解CML和SML,我们首先得先知道它们是怎么来的。故此文先对其来源进行说明,再回答此题。结论将摆在后方。

来源篇:

CML (Capital Market Line):

假设这个世界有且仅有两种风险资产(资产1、资产2),各自的期望收益率、各自的风险及相关系数你都已知。当然,你可以得到所有可能投资方式的期望收益和方差。以期望收益为纵坐标,标准差为横坐标画出来,即一条曲线。

图中两种资产分别为IBM股票与沃尔玛股票,红点标注为40%资产投入IBM股票与60%资产投入沃尔玛股票中的期望收益与标准差。

Image Source: Principles of Corporate Finance (Ninth Edition) Slides by Matthew Will

一般说来,如果这个世界有很多种风险资产且所有信息已知时,图像便变成了一个域,即图中阴影部分。而事实上,我们只会选择图中粉红色线段部分,因为在相同横坐标的情况下(风险相同的情况下),我们会选择期望收益最高的资产组合(即纵坐标最大)。

图中假设有10种风险资产,分别用黑色菱形标志。灰色面积为所有可能资产组合。

Image Source: Principles of Corporate Finance (Ninth Edition) Slides by Matthew Will

更一般而言,现实生活中会存在无风险资产(如:银行存钱)。如果当我们引入无风险资产,我们会期望投资这样的资产组合,当风险相同时,期望收益最大。于是,我们让从无风险资产的点引申的射线与上图中粉红色的边相切。

图中rf点即为无风险资产,T是上图中的粉红色曲线,S为相切的点(有效资产)。红色直线为CML,在S左侧资产需要存钱,在S右侧资产需要从银行借钱。

Image Source: Principles of Corporate Finance (Ninth Edition) Slides by Matthew Will

因此,这即是CML,有效资产S与无风险资产的组合。

表示为

SML (Security Market Line): (数学知识要求较高,看不懂可以先略过看后面的结论。)

假设我们构造一个资产组合,其中有α份资产i(待求资产),还有(1-α)份资产S(如上定义)。那么期望收益与方差分别为:

;

意识到,α=0时,即全为S资产,所以此资产曲线必然与CML相交。

而这个点究竟是交点还是切点?答案:一定是切点。否则,将会与CML定义相背离。因为CML需要与T相切,而i一定在T的边界或右下角。

既然是切点,用数学化的语言表达,即此资产组合在α=0(S)点的斜率,等于CML的斜率。即

于是,

整理即是SML:

结论篇:

结论:CML用来衡量资产组合的有效性(efficiency),SML用来衡量资产是否被正确定价(fairly priced)。

CML(Capital Market Line):

CML是在风险资产与无风险资产都存在的情况下,以期望收益率和标准差为坐标的射线。

射线上方不存在任何投资可能,射线上存在着有效投资,射线下方所有点均为非有效投资,但其仍然可能被投资来构造有效投资。

于是我们利用衍生出的Sharpe Index来判断资产是否有效(efficiency)

Sharpe Index:

若Sharpe Index与Sharpe Ratio(CML的斜率)相等或极其相近,我们说资产是有效的或近乎有效的。

若Sharpe Index远远小于Sharpe Ratio(CML的斜率),我们说资产不是有效的。

SML(Security Market Line):

SML是建立在CML基础上,以期望收益率与beta(风险敏感性)为坐标的直线(可向左边延伸,即beta<0)。

射线上方下方与射线上均可有投资可能,其存在不违背任何定义或假设。

同样,我们利用衍生出的Jensen’s Index来判断资产是否正确定价(fairly priced)

Jensen’s Index:

若Jensen’s Index大于零,即点落在SML上方,实际收益率比理论收益率要高,即价格低估。

若Jensen’s Index小于零,即点落在SML下方,实际收益率比理论收益率要低,即价格高估。

但并非所有Jensen’s Index大于零的都是好投资,因为SML只涉及系统误差,所以其也可能存在较高的非系统误差(specific variance),导致其落在CML下方而成为非有效投资。

— 完 —

本文作者:姚岑卓

参考资源链接:[0.8-30 GHz无电感CML-DFF分频器:新型数字校准设计与仿真](https://wenku.csdn.net/doc/2vdkv54mtw?utm_source=wenku_answer2doc_content) CML-DFF分频器是一种高效的电流模式逻辑电路,它在高频响应小型化方面具有显著优势。数字频率校准是一种强大的技术,通过软件调整而非物理组件来优化分频器的性能功耗。在CML-DFF分频器中实现数字频率校准,主要涉及到以下几个步骤: 1. 设计一个精细的频率控制模型,这通常包括一个频率反馈回路一个数字控制单元。反馈回路检测当前的输出频率,并与期望频率进行比较,然后将差异值送至数字控制单元。 2. 数字控制单元根据反馈回路提供的频率偏差信息,计算出需要调整的参数值。这可能包括改变电流源的强度、调整电容的充放电时间或者调整内部时钟信号的相位等。 3. 应用校准算法对分频器的性能进行调整。这可以是简单的增量/减量调整,也可以是基于复杂算法如PID控制或模糊逻辑的更高级校准技术。 4. 校准参数存储在寄存器中,并实时更新到分频器的电路中,实现动态频率调整。 在设计时,需要考虑如何使校准过程对系统性能的影响最小化,同时确保校准过程本身不会引入过多的延迟或功耗。此外,校准的实现应考虑CMOS工艺带来的限制,以及如何利用这些工艺特征来提高功率效率面积优化。 有关该领域的深入研究实践应用,推荐参阅《0.8-30 GHz无电感CML-DFF分频器:新型数字校准设计与仿真》一文。本文详细介绍了基于CML-DFF的分频器的建模、设计以及数字校准技术的实现,对相关技术领域的研究者工程师有极大的参考价值。 参考资源链接:[0.8-30 GHz无电感CML-DFF分频器:新型数字校准设计与仿真](https://wenku.csdn.net/doc/2vdkv54mtw?utm_source=wenku_answer2doc_content)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值