梁敬彬梁敬弘兄弟出品
往期回顾
小朋友都能懂的人工智能⓵开篇大吉(上)
小朋友都能懂的人工智能⓵开篇大吉(中)
小朋友都能懂的人工智能⓵开篇大吉(下)
小朋友都能懂的人工智能②卷机神经网络初探(上)
小朋友都能懂的人工智能②卷机神经网络初探(中)
小朋友都能懂的人工智能②卷机神经网络初探(下)
小朋友都能懂的人工智能⓷ -惊世骇俗的阿“狗”故事(上)
小朋友都能懂的人工智能⓷ -惊世骇俗的阿“狗”故事(中)
小朋友都能懂的人工智能⓷ -惊世骇俗的阿“狗”故事(下)
「 11 阿狗附体的小A」
L:大家好,又见面了,今天就来和大家探索一下阿尔法狗强大的秘密。
众人顿时来了精神,充满期待。
L:先问问5段小高手一个问题。小A,假如你爸爸正在参加围棋比赛,你到现场观战时会做什么?
A:我会判断棋局形势,如果是爸爸大优,我会出去给妈妈报喜。如果不利则会为爸爸想想有没有什么地方可以拼一拼。
L:了不起!你的思路和阿尔法狗一模一样,看来小A和狗大师一样强了。
众人大笑。
A:阿尔法狗也是这样思考的吗?
L:是的。你判断局面优劣的方式,在AlphaGo这对应着一个专业名词,叫价值网络。而你找机会拼一拼的尝试,在AlphaGo这也对应一个专业名词,叫策略网络。
A:有意思,原来阿尔法狗和我们人类棋手思考方式是一样的啊。
L:是的,小A,当你觉得某些地方可以拼一拼时,你会立即落子呢,还是会沿着这些选点往下计算,等可行性验证完毕后再落子。
A:当然先计算啊,如果计算后发现这些选点并不好,我就要考虑换选点。
L:恭喜!你对选点可行性进行计算验证的思路,依然和AlphaGo是一模一样的,其对应的专业名词为蒙特卡洛树搜索。小A,你真是阿狗附体啊。
笑声再起,小A有些不好意思了。
A: L老师,我觉得自己的思考方式也没啥特别之处,棋手不都是这么做吗?
L:你觉得没有什么特别的,可对围棋AI而言,有这样人类棋手的思考方式,可是不得了的事了。
A爸:L老师,难道就是因为有了类似人类棋手的思考方式,阿尔法狗才变厉害的吗?
L:A爸,你说对了!
未完待续…
小朋友都能懂的人工智能⓸ -狗大师的修仙之路(中)
🧠 AI小百科:人工智能的思考方式
AlphaGo的思考模式确实模仿了人类棋手,但这种"思考"与人类有本质区别。人类棋手凭借直觉和经验进行判断,而AlphaGo则是通过海量数据训练出的数学模型。
有趣的数字对比:
- 人类职业棋手:一生大约下2,000-5,000盘对局
- AlphaGo训练:分析了约3,000万个棋局位置
- AlphaGo Zero自我对弈:4,900万盘完整对局
AlphaGo的三大核心组件(策略网络、价值网络和蒙特卡洛树搜索)共同构成了一个"超级大脑",能在复杂程度堪比宇宙的围棋可能性空间中找到最优解。而围棋可能的局面数量约为10^170,
远超宇宙中的原子总数(约10^80)!
系列回顾