在数字化转型浪潮中,当代企业如同逆水行舟,不进则退。无数企业希望通过数字化转型捕获全新的市场机遇,改善财政状况,在未来市场竞争中占据一席之地。要想获得成功的数字化转型,关键因素在于具备可靠、及时的数据用以支撑转型计划,即成功的数字化战略是建立在数据之上的,数字化战略能取得何种程度的成功,取决于数据管理能力的高低。
大多数情况下,沿袭传统方式管理数据并不能满足数字化战略的需求。作为企业数字化转型的助推剂,只有为业务计划提供优质、及时、完整的数据才能赋能企业转型,这就意味着传统数据管理流程需要进行彻底升级乃至重塑。事实上,在IT增长缓慢的情况下,有三类方法可实现这一目标:
-
提高数据管理任务和项目的自动化水平及效率;
-
提高业务自主服务的可实施性;
-
增加协作以推动业务和技术团队之间的一致性;
利用机器学习
奠定智能数据管理的基础
对于企业而言,构建作为所有数字化计划基础的数据管理能力至关重要。不仅要求数据能被整个企业内的任何用户发现和使用,还需要达到与目的相符的质量:即用于重要决策和交互的数据必须具备高质量;用于快速创新和迭代的数据则需具备中等质量。
要想提高数据传输速度以满足企业关键业务计划的需求,企业需要提高自动化水平。将机器学习系统用于构建可用来作出预测或决策的基于输入的模型,从数据中获取信息并进行自我调整。利用企业范围内的元数据可见性和机器学习,驱动数据管理工具提出明智的建议并自动完成诸多数据管理任务,例如:
探查和识别:
-
数据质量规则和业务实体发现
-
语义搜索、模式识别和数据分类
-
异常检测和通知
预测操作:
-
爆发以应对数据峰值
-
优先执行操作问题调查
-
通过自我修复应对环境变化
下一步最佳操作和建议:
-
推荐数据集、转换和规则
-
从源到目标的自动映射、清除和标准化
-
自我集成新数据源
有效的机器学习离不开大量训练数据集。大部分企业拥有数以千计的数据库、数据文件、应用程序和分析系统,通过收集此类数据仓库中的元数据,构建体量庞大的目录,在数据管理背景下,企业范围内的数据目录就是训练机器学习的最佳数据源。通过结合使用机器学习和有着企业范围内元数据可见性的数据目录,就能帮助企业奠定智能基础,进而对数据管理效率产生积极影响。值得注意的是,这类方法同样适用于SaaS应用程序。