正则 正整数_二阶齐次线性常微分方程在正则奇点处求解问题

根据定理9.3,二阶常微分方程在正则奇点处有两个线性无关的正则解w1(z),w2(z),将w1(z),p(z)和q(z)的laurent展开级数代入微分方程并整理,由z的最低次幂的系数为零得到指标方程,求解这个关于ρ的一元二次方程得到ρ1,ρ2(规定Reρ1>=Reρ2)。进一步整理系数得到Ck的关于ρ的普遍表达式。

理论上讲,把ρ1,ρ2分别代入Ck的普遍表达式,即可求得两个系数Ck1,Ck2,把ρ1 Ck1,ρ2 Ck2,分别代入w1(z)的一般表达式,即可得到两个相同形式的解,若此时两个解线性无关,那么这两个解就是我们要找的w1(z),w2(z)。若两个解线性相关,那么将ρ2代入求得的解不是我们要找的解,即w2(z)此时含有对数函数项。

那么根据指标方程求出ρ1,ρ2后,能不能直接判断w2(z)的形式呢?

可以。

分三种情况:

1.若ρ1=ρ2,则w2(z)一定含有对数函数项;

2.若ρ1-ρ2≠整数,则w2(z)一定不含有对数函数项;

3.若ρ1-ρ2=整数(一定是正整数),则w2(z)可能含有对数函数项。

对于上述三种情况,w2(z)不含有对数函数项时,将ρ2及Ck2(即课本中的dk)代入w1(z)的一般表达式便可得到w2(z)。W2(z)含有对数函数项时,需将w2(z)的一般表达式代入微分方程重复上述过程求解。

二·自己关于求微分方程求正则解的几点理解

w2(z)中对数函数项的作用;是w1(z)和w2(z)线性无关的最后保证;

当ρ1-ρ2=整数时,如何判断w2(z)有没有对数函数项呢?

不妨先假设w2(z)没有对数函数项,那么ρ2便可和ρ1一样代入Ck的递推关系式,并令k=m,得到一个式子0*Cm+(式子A)=0(a),若:式子A≠0,等式a不成立,说明我们逻辑出了问题,我们的假设出错了,说明w2(z)含有对数函数项。式子A=0,等式a成立,Cm(即dm)任意,所以呢,w2(z)不含有对数函数项。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值