java二重积分_《University Calculus》-chaper13-多重积分-二重积分的引入

该章节探讨了多重积分的理论与应用,特别是二重积分在求解曲顶柱体体积中的角色。通过回顾积分的黎曼和概念,解释了如何将不规则几何体化曲为直,进而使用极限思想求得面积或体积。二重积分涉及在x-O-y平面上的曲面,通过将底面矩形划分为小矩形并求和,最终得到曲面区域的体积近似值。随着分区数量增加,此近似值趋近于实际体积。
摘要由CSDN通过智能技术生成

这一章节我们开始对多重积分的研究。

在此之前,我们首先来回忆起积分的过程,在平面中,面临求解不规则图形的面积(常叫曲边梯形)的时候,我们可以采取建立直角坐标系,然后通过得到不规则图形边界的函数表达式f(x),对f(x)求解一次定积分即可。其方法就是先微分(将自变量区间划分为n个区间段),引入极限的概念(即使得n趋向无穷)之后使得我们能够“化曲为直”,然后利用矩形的面积公式进行求解。随后是积分过程,将这n个小矩形相加求极限,可得曲边梯形的面积。

如下几图使得这个过程更加的直观.

0d5a69bb85b2f8d3994620ff8ad1a85c.png

a21398f0e63e34b6327b8d95e01e6852.png

Sp又叫做,f(x)在[a,b]上的黎曼和。

关于黎曼和,这里简单的插一句,关于积分的定义在牛顿时代就已经给出了,但是它现代数学的的定义是后来黎曼给出的。关于黎曼和,存在着很多形式。

由于积分和微分是逆运算,由此根据导数的定义可给出积分符号∫。

那么我们把一开始求曲边梯形的面积推广到空间,对于一个长方体将其一个面换成曲面(曲顶柱体),我们如何求解其体积呢?

像这个图一样。(其顶部是一个曲面,底面在x-O-y面上

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值