cholesky分解_数值计算笔记-部分主元消去&cholesky分解

1eefd6d8cc69b41a5e98cb940dfed026.png

补充:接上一篇LU分解

1.高斯消元的一些问题:在之前高斯消元得到LU分解时,必须假设没有较换行的操作,即在消元过程中没有主元

的现象。但是实际情况有如下定理

定理

非奇异,若对A高斯消元过程中主元
,则该列下方至少有一个元素不为0,即

2.部分主元消去法推导(初等矩阵和消去矩阵的关系)

定理(初等矩阵性质):P为初等矩阵(由I经过一次初等行变换得到)

(1)

(2)

(3)PM:对M进行行变换;MP:对M进行列变换

在高斯消元进行到第k行,第k列时,要把第k列最大的元素选为主元,因此高斯消元过程表示为

  • 其中P为置换阵/排列阵,且正交
    ,可以用一列数组
    储存;
    代表第i行1所在的列号
  • 可以证明
    也为消去矩阵

3.部分主元高斯消去法

输入:A,置换阵的初值

输出:排列好的置换阵

,LU储存在A中
for	k = 1 to n - 1
	确定|a_sk| = max{a_ik}
	交换A的第k行和第s行
	较换p[k], p[s]
	for i = k + 1 to n
		a_ik = a_ik / a_kk //计算L的元素,储存在A中
		for j = k + 1 to n
			a_ij = a_ij - aik * a_kj
		end
	end
end

注:

(1)用得到的PA = LU分解解方程:

;可以用LU分解基本相同的算法进行计算

(2)选取最大主元除了防止

的情况,还可以减少误差

4.对称正定矩阵Cholesky分解

(1)对称矩阵A的LU分解

A = LU,且

,D为对角矩阵,
为单位矩阵

,根据LU分解的唯一性,

(2)cholesky分解(A为对称正定矩阵)

可知

cholesky分解定理:A为是对称正定矩阵,存在非奇异下三角矩阵L,使

,其中L的对角线元素均大于0.

5.cholesky分解计算

推导:

(1)计算

(2)计算

(3)计算

(4)计算

算法:对称正定矩阵Cholesky分解算法

for j = 1 to n
    // 该循环计算l_jj
	for k to j - 1
		a_jj = a_jj - a_jk ^ 2
	end
	a_jj = sqrt(a_jj)
    // 该循环计算l_ij i > j
	for i = j + 1 to n
		for k = 1 to j - 1
			a_ij = a_ij - a_ik * a_jk
		end
		a_ij = a_ij / a_jj
	end
end
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值