直线和圆交点 halcon_“关于圆对称”的变换是什么样的?

d73778de6744f9636ca3419ac5d48576.png

平面几何中有“关于点对称”和“关于直线对称”的变换,那么有“关于圆对称”的变换吗?

虽然没有“关于圆对称”的正式说法,但是的确有一种变换能够产生类似的效果——反演变换。它不仅是平面几何中的一个强力工具,还在复分析和双曲几何等领域占据一定地位。

这篇文章就来说说平面几何中的反演变换。

注:严格地说,文中讨论的只是平面几何中反演变换的一类——正幂反演,但是为了方便,下文将它统称“反演变换”。

一、反演变换是什么?

假设平面内有一个半径为

的圆,圆心为
。对于平面内任意一点
,我们都可以在射线
上找到唯一的点
,使得
。这个从
的变换就称为
反演变换,其中
反演圆,点
反演中心
反演幂,点
为点
关于圆
反点。概念稍微有些多,所以用动画展示一下。
7dff39a0ec8ec70c47403c352c0d2184.png
反演变换中的概念https://www.zhihu.com/video/1210551955904630784

定义很简练,但是有缺陷:对于反演中心

来说,如果它存在反点
,根据定义,二者之间的距离就需要满足以下关系:
结果无意义,意味着你无法在平面上找到点
。简而言之,反演中心没有反点。

为了给反演中心找一个伴侣(更重要的是为了保持反演变换的良好性质),我们引入一个假想的无穷远点

,并规定
反演中心
与无穷远点
互为反点。引入
之后,平面内几何图形的部分性质发生了变化,甚至还有些不可思议,完全可以花些篇幅详细介绍一番,但是目前不做过多讨论,对它抱有两点直观感受就好:
  • 所有直线都经过
    ,所以
    两条直线至少有一个交点
  • 由于
    的存在,直线无限延伸的两端最终会交汇。从这个意义上说,
    直线像是一个半径无穷大的圆

现在回头琢磨之前的定义,不难发现反演变换的一些基本性质:

  • 经过反演变换后,圆内的点变换至圆外,圆外的点变换至圆内,圆上的点保持不变;
  • 与点
    关于圆
    互为反点;
  • 反演变换的逆变换就是自身(上一条性质的推广)。

圆内与圆外的点互反,圆上的点保持不变,再加上自逆性——以上性质和点对称/轴对称实在是太相似了,这就是为什么反演变换可以视作一个“关于圆对称”的变换。

可是,如果随意拿一个几何图形,做一次反演变换,结果嘛......

f8bbefeb6abd41ff7936066ee6265334.png
反演变换的效果https://www.zhihu.com/video/1210552103686672384

虽然谈不上面目全非,但是反演变换后的图形(又称反形)的长相确实大变样了,和点对称/轴对称完全不一样!这样看来,反演变换似乎就是为了构造“关于圆对称”而生的,它究竟有什么用呢?

二、反演变换有什么特殊性质?

对于大多数几何图形来说,反演变换确实会改变它们的形状,但总是有幸运的家伙能逃过一劫,比如过反演中心的直线,它的反形还是自身:

56ad0b2d248480c533e3c54bb273c3c6.png
反演变换:直线→直线https://www.zhihu.com/video/1210552258322415616

有一点需要注意:对于直线在圆内的部分,它们在反演后会跑到圆外,甚至直接映射到

;而原本在圆外的部分会进入圆内。虽然反形还是同一条直线,但是在经历反演后,直线上各点的位置基本都发生了变动。

目前,我们得到了反演变换的一个性质:经过反演中心的直线

经过反演中心的直线其实还是同一条直线)。不经过反演中心的直线的反形是什么呢?来看看下面的动画:
8990e49040956ec9220387f7053a4062.png
反演变换:直线→圆、圆→直线https://www.zhihu.com/video/1210556622743076864

看上去,它的反形似乎是一个经过反演中心的圆。如何证明呢?

首先,过反演中心

做蓝色直线的垂线,垂足为
,其对应的反点为
。另外,我们可以在直线上找到另一个点
,并找到它的反点
。根据反演的定义,下面两个关系成立:
其中
为反演圆的半径,是一个常数。把这两个式子结合,可以得到比例关系:
结合
(公共角),这就证明了
。由于
是直角,
也是直角。对于给定的反演圆和直线,反演中心
和垂足反点
固定,意味着点
落在以
为直径的圆上,也就是动画中的红色曲线。

更重要的是,由于之前补上了

,红色曲线上的所有点(包括反演中心)都能通过变换得到,因此以
为直径的圆就是蓝色直线的反形!从而我们得到了反演变换的又一个性质:
不经过反演中心的直线
经过反演中心的圆注意直径
与蓝色直线的关系)。

由于反演变换的自逆性,经过反演中心的圆

不经过反演中心的直线自然也就成立。

在上面的证明中,我们用到了相似三角形。实际上,如果有任意两组不同的反点对,比如点对

以及点对
,你都能找到一组相似三角形——
注意顶点的对应关系):
5df0c8cbb17a705fccf856ba263e7346.png
反演变换中出现的相似三角形https://www.zhihu.com/video/1210557571083612160

据此,这条性质同样成立:不经过反演中心的圆

不经过反演中心的圆。证明过程并不复杂,你可以尝试自己推导。下面的动画展示了其中一种情况,即原像不包含反演中心。原像包含反演中心的情况与之类似,此处不再展开。
fb8be9037db411f84fe4cd828ec360fc.png
反演变换:圆→圆https://www.zhihu.com/video/1210558994806534144

除了相似三角形的性质之外,以下是刚才探索的反演变换对几何图形的作用:

  • 经过反演中心的直线
    经过反演中心的直线,并且原像与反形一致
  • 不经过反演中心的直线
    经过反演中心的圆,并且反演中心与反形圆心构成的直线与原像垂直;
  • 经过反演中心的圆
    不经过反演中心的直线,并且反演中心与原像圆心构成的直线与反形垂直;
  • 不经过反演中心的圆
    不经过反演中心的圆,并且反演中心、原像圆心与反形圆心共线。

内容有些杂,那就概括一下:如果把直线(“半径无穷大的圆”)囊括进来,将“圆”的概念拓展为“广义圆”,那么上面四条性质其实叙述了同样一件事:在反演变换下,广义圆

广义圆。这就是 反演变换的保广义圆性,简称 保圆性,是反演变换的重要性质之一。

需要注意的是,反演变换虽然保圆,但是不保圆心,原像的圆心与反形的圆心并不是互反的!

19105a490ffef87f9bf94022c5423e58.png

既然提到了保圆性,就不得不提反演变换的另外两条性质,它们都可以由之前使用的相似三角形性质迅速导出,读者不妨尝试证明一下:

  • 保角性:反演变换保持平面内两条曲线的夹角大小不变(但是角的定向会发生反转);
  • 保交比性:假设平面内有四组互反点对
    ,
    ,
    ,以下关系成立:

虽然反演变换不能完美复制大多数几何图形,但是它最起码能够保证广义圆不发生形状改变。而且正是“广义”的存在,反演变换能够实现圆与直线之间的自由转化。接下来,我们就看一个经典不等式的证明,体会反演变换带来的视角转变。

三、反演变换的应用——证明托勒密不等式

托勒密不等式的内容如下:

任一凸四边形
两组对边长度乘积的和大于等于对角线长度乘积,即
当且仅当
四点共圆时取等号。

下面的动画是托勒密不等式的简单演示,其中

三点保持不动,可以观察
点位置变化与不等式左右两侧的数量变化:
7d9b821511d03528f3c0eec35f40ae33.png
托勒密不等式的简单演示https://www.zhihu.com/video/1210558096944361472

托勒密不等式中涉及了

四点的共圆性,这就是关键的突破口。在反演变换中,圆与直线能够相互转化,因此“共圆”与“共线”之间也能相互转化。更重要的是,如果选择其中一点(例如点
)作为反演中心,反演之后的结果为:
由于直线必然经过
,如果要证明
四点共圆,只需要证明
三点共线即可!这样就能顺利地将“四点共圆”化为“三点共线”的问题。

遵循这个思路,对于凸四边形

,选择
作为反演中心,做一个半径为
的反演圆,使其包含四边形
,并分别作出
的反点
,结果如下图所示:

938f28af9f54969cdf5dcade10de287a.png

在上图中,我还做出了经过

三点的圆以及它的反形。

利用反演变换能产生相似三角形的特点,我们可以得到三组相似三角形:

以及
。以第一组为例,因为
,所以:
再根据反演的定义
,将上式中的
代换,稍作整理:
同理,其他两组相似三角形也有类似的结论:
根据三角不等式:
直接做代换:
两边约去
,同乘
以约去分母,立刻得到托勒密不等式:
由于上式直接从三角不等式转化而来,所以取等号的情形也显而易见:当前仅当
落在线段
上,也就是
四点共圆。证毕。

从托勒密不等式出发,我们还可以导出勾股定理:当四边形

为矩形时,四个顶点共圆,对边长度相等,对角线长度相等,所以有:
而且,在反演变换保圆性、托勒密不等式和矩形性质的证明中不会用到上述平方关系,所以这也是证明勾股定理的一种有效方法。

四、And more...?

作为平面几何的重要基础变换之一,反演变换的威力绝不仅限于此。就拿保圆性来说,我们目前只关注了广义圆形状上的变化,但是如果深究大小和位置等细节,还能挖掘出更多有趣的结论。下篇文章中,你将会看到如何用反演变换证明笛卡尔定理。

Solara570:四圆相切与笛卡尔定理(上篇)​zhuanlan.zhihu.com
9643f6b1cd2a913edc3fa38304abbc00.png

参考资料

  • Cut the Knot! - Inversion(网站,作者Alexander Bogomolny)
    • 实打实的干货,内容详实而且可交互,感兴趣的朋友一定要看到页面结尾。
  • Inversion in a Circle(文章,作者Tom Davis)
    • 同样是实打实的干货,也包含不少用反演解决的定理或问题,唯一的瑕疵在于四则运算做错(笑)
  • Chapter 5: Inversion(教案,作者John E. Gilbert)
    • 前半部分讲反演,末尾延伸到双曲几何,可以看看。
  • Sacred Mathematics - Japanese Temple Geometry(书籍,作者Fukagawa Hidetoshi, Tony Rothman)
    • 关于日本算額(Sangaku)的书,可以说是“奇怪几何问题习题集”。第十章是反演的简介,里面的问题也很有趣。

最后说件有意思的事。这篇文章从去年10月开始躺在草稿箱里,偶尔拉出来补点字。刚巧这几天不能出门,我打算静下心来把它写完。然而,今天(2020.2.10)看到Numberphile频道的推送(2020.2.9)之后,我感到异常绝望……如果你看了那期视频,会发现上面的内容和它出奇地一致,但是我可以保证:这篇文章是独立完成的,文字和动画全部亲手搞定。

至于为什么看到了类似的内容,我还要执意把它发出来,原因有三:

  1. 我需要有自己的文章介绍反演变换的基本知识,为下篇(笛卡尔定理及其证明和应用)做铺垫;
  2. Numberphile推送时,工程量已过大半——文字完成50%、动画完成80%;
  3. 像托勒密不等式这样优秀的例子实在是不好找……

总之,还望见谅。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值