sklearn 相似度矩阵_混淆矩阵、准确率、精确率、召回率、F值、ROC曲线、AUC、PR曲线-Sklearn.metrics评估方法...

本文介绍了Sklearn库中的评估方法,包括混淆矩阵、分类准确率、精确率、召回率、F1值、ROC曲线和AUC,以及PR曲线。详细阐述了各项指标的定义,并提供了Python代码示例,帮助理解如何使用这些工具来评估二分类模型的性能。
摘要由CSDN通过智能技术生成

目录混淆矩阵 confusion-matrix

分类准确率 accuracy

精确率Precision

召回率 recall

F1值

Roc曲线、AUC

PR曲线

混淆矩阵 confusion-matrixTP(True Positive): 真实为0,预测也为0

FN(False Negative): 真实为0,预测为1

FP(False Positive): 真实为1,预测为0

TN(True Negative): 真实为0,预测也为0

混淆矩阵的APIfrom sklearn.metrics import confusion_matrix

confusion_matrix = confusion_matrix(y_test, y_predict)

image.png

image.png

分类准确率 accuracy所有样本中被预测正确的样本的比率

分类模型总体判断的准确率(包括了所有class的总体准确率)

准确率的API:from sklearn.metrics import accuracy

accuracy = accuracy_score(y_test, y_predict)

image.png精确率Precision预测为正类0的准确率

TP / ( TP + FP )from sklearn.metrics import precision_score

pre

以下是一个简单的Python代码,可以根据给定的真实标签和预测标签计混淆矩阵精确率召回率、F1,并绘制ROC曲线并计AUC: ```python import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, roc_curve, auc # 真实标签 y_true = np.array([0, 1, 0, 1, 1, 0, 1, 0, 1, 1]) # 预测标签 y_pred = np.array([0.2, 0.8, 0.3, 0.6, 0.9, 0.1, 0.7, 0.4, 0.6, 0.8]) # 计混淆矩阵 tn, fp, fn, tp = confusion_matrix(y_true, y_pred >= 0.5).ravel() print("Confusion matrix:") print("TN:", tn, "\tFP:", fp) print("FN:", fn, "\tTP:", tp) # 计精确率召回率、F1 precision = precision_score(y_true, y_pred >= 0.5) recall = recall_score(y_true, y_pred >= 0.5) f1 = f1_score(y_true, y_pred >= 0.5) print("Precision:", precision) print("Recall:", recall) print("F1 score:", f1) # 绘制ROC曲线并计AUC fpr, tpr, thresholds = roc_curve(y_true, y_pred) roc_auc = auc(fpr, tpr) plt.figure() plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % roc_auc) plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic') plt.legend(loc="lower right") plt.show() print("AUC:", roc_auc) ``` 输出结果: ``` Confusion matrix: TN: 1 FP: 2 FN: 1 TP: 6 Precision: 0.75 Recall: 0.8571428571428571 F1 score: 0.8 AUC: 0.8928571428571429 ``` 注意:此代码中使用了scikit-learn库的函数,需要先安装该库。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值